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Abstract

This paper presents a computer model for bar per-
cussion Instruments that captures their main physical
characteristics in a very flexible structure. The starting
polnt Is current knowledge of the acoustics of the in-
struments. Then a modular analysis/synthesis process
is presented based on Discrete Fourter Transform tech-
niques and fliter methods. The result of the research
is an algorithm Implemented on the Systems Concepts
Digital Synthesizer (“Samson Box") that integrates se-
veral synthesis strategies. This algorithm maps to the
underlying physlcs of the Instruments and its parame-
ters are easlly specified.

Introduction

A computer model of a musical instrument consists of an
algorithm which can be implemented in a computer or an
integrated digital circuit. It produces a digital signal that
simulates the sound produced by the instrument, given as
input a set of parameters specified by the user.

In this paper a model of bar percussion instruments is
developed. We are aiming for a model that is general for
the wlhole family of bar percussion instrumeats, and that
means that it will have to be flexible enough to accomodate
the different instruments. Another choice is that the model
has to relate to the underlying physics, since it is on physi-
cal reality that our intuition is rooted. It also has to be
computationally cfficient, but without compromising its ac-
curacy. Finally, the validity of the model will be based on
the perceptual quality of the sound that it produces, and
the analysis results or physical characteristics will be dis-
carded whenever they are not perceptually relevant.

1. Acoustics of Bar Percussion Instruments

The discussion of this article concentrates on bar per-
cussion instruments that use rectangular bars suspended
at both ends. This family of instruments includes: marim-
bas, xylophones, vibraphones and glockenspiels (orchestral
bells). The physical unit which is responsible for the sound
production comprises thrce separate elements: bar, resona-
tor {where applicable), and mallet.
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1.1. Bar

A rectangular bar with free ends vibrates primarily trans-
versely (by bending perpendiculary to its length) [7]. We
will not consider less important vibrations such as lon-
gitudinal, torsional, or shear waves, since in the normal use

of the mallet, striking the bar at right angles to its length.

only the transversal modes are excited (IVig. 1).

Figure 1. First five transversal modes of a bar with free cuds.

The frequencics of the transverse modes of vibration for
an ideal bar are described by the following formuia [9]:

rol(

Jo = "é‘ljz‘""

n =mode numnber {1,2,3,...), v =velocity of sound= /Y /p,
Y =Young's modulus of clasticity, p = density, [, =

length, m = 3.0112,5,7,.. ., (2n +1), K = “radius of gyra-
tion” = {/V12, t = thickness.

As this formula shows, the frequencies of the transverse
vibrations depenrd upon the length of the bar, upon the
elasticity of the material from which it is made, and upon
the thickness of the bar. The frequency ratios of the first
few modes with respect to the first one {fundamental fre-
quency) are: I,2.76,5.70,8.93, ctc., given any Y, p, L and
L. :
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In the real world only some glockenspiels have bars with
perfectly rectangular cross-section and will, in ideal condi-
tions, behave according to the model. By contrast, the bars
of marimbas, xylophones, vibraphones, and many glock-
enspicls have arch-shaped bottom surfaces for the purpose
of tuning the upper partials and reducing the length re-
quired to get low frequencies. The shapes of these arches
vary with manufacturers, and so do the frequencies of the
different modes of vibration.

We cannot use the stated equation to study the vibra-
tional behavior of the non-uniform bars, and to accomodate
the model to ail the deviations found in real bars is a very
difficult problem. There are some experimental estimates
for the first few modes in different instruments, but the
results are very different depending on the author, espe-
cially for the high registers. In the low registers the results
are more consistent and we can use the following frequency
ratios from Moore [6] to compare the different instruments:

Glockenspicl
1:272:53:86:12.7

Marimba Xylophone Vibraphone
1:4:10 1:3:6 1:4:10

In the marimba, xylophone and vibraphone only the first
three modes of vibration are really distinct; in the glock-
enspiel there are a few more. It is important to mention
that we are only talking about the frequency of the different
modes, not their amplitude nor their evolution in time.
These variables depend on other factors apart from the
shape of the bar, for example, the material from which it
is made, the mallet used, and the way it is struck.

1.2. Resonator

Most of the bar percussion instruments have a resonator

underncath each bar. They are cylindrical tubes closed at

the lower end and tuned Lo the fundamental frequency of
the bar.

The air inside a closed tube vibrates at odd integral
multiples (i.e., 1,3,5,7,...) of the fundamental frequency.
This fundamental frequency can be expressed as a function
of the length of the tube by the formula

c

=1
=1L
[ =fundawmental frequency (= £} X = wavelength (= f),

¢ = speed of sound, L = length of tube.

This nieans that in the ideal case the length of the tube is
one quarter of the wavelength of the fundamental frequency
of the bar. Such a tube will resonate the odd integral
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partials of the bar. Only the xylophone has an upper
partial with this characteristic; in the other cases only the
fundamental will be emphasized by the tube, plus some
energy that happens to be in a resonated frequency region
due to deviations from the ideal case.

1.3. Mallet

The mallet is used to excite the system; it s practically
the only means that the performer lias to control the souud.
It consists of a heavy head fastened to a light shalt.

Apart from the way of playing, the harduness and size of
the head will determine the sound quality produced by the
instrumnent. A hicad of soft material and large contact area
with the bar will produce a tone with a strong fundamental
and less prominent partial tones. A head of hard miaterial
and a smaller contact area with the bar will produce a tone
with more and stronger partial tones.

2. Computer Model

The objective is to create a general computer model for
the family of bar percussion instruments. We first choose
the characteristics of the model we want. (1) It has to
be computationally eflicient, but without compromising its
accuracy. (2) Its paramcters have to map to the under-
lying physics of the instruments. (3) The final judgment
of the model will be based on the quality of the sound it
produces, and so we will exclude the physical characteris-
tics and analysis results whenever they are not perceptuadly
important.

sceike —
wallet velocity — BAR »

hardness and
size of head

RESOHATOR

Figure 2. General model for bar percussion instruments.

The bar and the resonator are acoustically separate and
will be modeled accordingly. The bar is a complex system,
especially if we consider the deviations from the ideal case.
For it, the model is based on sound analysis of instrumen-
tal bars, and it consists of a combination of sinusoids and
a linear time-invariant filter driven by white noise. This
model has proved very eflicient and at the sane time maps
to the underlying physics of the bar. The resonator can be
approximated by a simple Helmholtz resonator and modeled
with a lincar time-invariant filter similar to the one of the
IKarplus-Strong algorithm [8]—special case of the McIntyre-
Woodhouse string model [5] . For the bar-resonator inter-
action the only control needed is the amount of the bar out-



put going into the resonator. In the case of the mallet-har
itnteraction, there are three main variables to be specified:
" strike position, mallet velocity, and hardness and size of
the mallet’s head. Fig. 2 shows the basic structure of the

model.
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Figure 3. Maguitude spectrum of the attack portion of the
middle C of a marimba bar.

2.1. Bar model

By looking at spectral analyses of the sounds produced
by different bars (the resonator being removed), we can
easily sce the first few modes of vibration. Fig. 3 shows
the spectrum of the attack portion of the middle C of a
marimba bar. In it the first 3 modes are prominent, with
frequencies of 264 11z, 1056 Hz, and 2480 Hz. But there is
more than that: there is a noisy component from 0 to 4500
Hz that is definitely perceptible and has to be taken into
account. This is the situation at the attack of the note.
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Figure 4. Magnitude spectrum of the same sound as Fig. 3
but taken 1/10 of a second later.
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If we take a spectral analysis of the same sound but 1/10
of a second later (I'ig. 1), we see that, practically, the only
energy left corresponds to the three modes, the noise part
has vanished.

We have observed that the bars of the different instru-
ments behave in a similar fashion. They have a few promi-
nent modes, very stable in frequency for the whole dura-
tion of their sound, plus a noisy component at the attack
of the nate. We aim at finding a technique to analyze and
synthesize this kind of behavior and whaose results can be
manipulated to simulate different bars and mallet excita-
tions. A possible choicc is additive syuthesis, using the
phase vocoder [2] as the analysis-synthesis tool. Due to its
identity properties, we are assured of a goad resynthesis.
However, this technique proved to be very expensive, and
not flexible enough for our purposes. Neither the noise at
the attack time nor the inharmonic partials lend themselves
easily to the phase vocoder. Another choice is to use somie
kind of filter technique, since with filters it is easier to cap-
ture noisy signals. Linear prediction [4] is an example of (his
method. We also discarded this technique due to excessive
complexity and lack of flexibility for further transforina-
tion. In addition the current linear prediction techniques
give severe bandwidth errors for the resonant modes.

Our choice has been to analyze and model the prominent
modes and the noise separately, using a diflerent technique
for each one. The partials are analyzed with a tracking
phase vocoder and synthesized with additive synthesis. The
noisy component can be approximated very efliciently by
noise and modeled with a linear time-invariant filter driven
by an exponentially decaying noise source.

2.1.1. Analysis/Synthesis of the prominent modes

We want a technique that finds the prominent partials
and tracks them in time. We have used a tracking phase
vocoder developed by Julius Smith at CCRMA. Smith's
program was originally designed for the analysis and syn-
thesis of piano tones but it has proven to be useful for
many other sounds. This program follows the peaks in
a series of magnitude spectra {(computed using the Fast
Fourier Transforin) taken over the duration of a sound.
It tracks the amplitude and frequency trajectories of (he
n most promiuent peaks, where n is any integer specified
by the user. The output is a frequency envelope plus an
amplitude cnvelope for each partial; but in all the bar per-
cussion instruments, the frequency trace is flat and can he
left out. Another similar tracking phase vocoder was de-
veloped by Dolson |1].

For a good resynthesis of most of the instruments, it lias
been found that we only need the amplitude envelopes of
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the first three peaks and their frequency values. Then, to
model the entire frequency range, the analyses of two or
three notes per octave gives enough data. The amplitude
envelopes can be simplified using a line-segment approxima-
tion technique [12] and they are interpolated to obtain the
envelopes of the intermediate notes.

MACNITUDE DB

Flgure 5. 12-order all-pole filter fitted to the magnitude
spectrum of Fig. 3 with linear prediction.

2.1.2. Analysis/Synthesis of the noise component

In order to isolate the noise component we have to sub-
tract the prominent modes, these being modeled with the
technique discussed in the previous section. The direct way
is to band-stop filter each partial individually. This can be
very tedious and gives a resulting sound with the frequency
band around each peak completely removed. For our pur-
pose we want a more continuous spectrum. The solution
has been to use linear prediction to fit an all-pole filter to
the magnitude spectrum of the sound (Fig. 5). This traces
the prominent peaks but not the rest of the spectrum. Then
by inverting the filter (converting it into an all-zero struc-
ture, Fig. 6) and passing the sound through it we obtain
the noise remainder (Fig. 7).

HAGNI TUDE <DB)
-
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Fligure 6. Frequency response of a 12-order all-zero filter
obtained by inverting the all-pole flter of Fig. 5.

Once the noisy attack has been isolated, the task is to
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find a digital filter of low complexity that, given a certain
input, will reproduce the noise remainder. This noise is
different depending on the note, instrument and way of
playing, and so we want a filter structure {lexible enough
to accomodate all the different “noises™ while being casily
manipulated.
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Figure 7. Spectrum of the noise remainder alter removing the
prominent peaks with the filter of Fig. 6.

We have simulated this part of the sound very accurately
by using and exponentially decaying noise source to drive
a filter, which has a frequency response that approximates
the observed noise magnitude spectrum. Smith [11] is-
cusses many methods of finding a filter structure that ap-
proximates a given spectrum. For example, linear predic-
tion will fit an all-pole filter to a given spectrum, and by
inverting the spectrum, the same technique will give an
all-zero filter. To fit pole-zero filters is more complex, hut
Prony's method, equation error method, and Hankel's norin
methods {11} can give good results.

For our requirements an exact fit is not needed. Flexibility
is our main concern, and none of the methods that we huve
tried gives an easily changed filter structure. The most
efficient and easiest way has been to design second-order
pole-zero filters by hand and cascade them. T'wo such see-
tions have proved to be sufficient in most. cases.

The following formula is the transfer function of twao
second-order pole-zero sections, cascaded:

-2

(M+az7 +aaz"?) (Lot 402277
(L4027 + o) (1 4+ dy 27 + daz?)

H{z})=g¢

where g is the gain, and ¢, b, ¢, and d are the filter cocflicients.

Each scction gives a peak and a notch in the {requency
response of the overall filter. By contralling their place-
ment, gain, and bandwidth, we can approximate any spectrum,



and it is easily changed to fit another one. By adding sec-
tions we add resonances and notches.

To control the center-frequency and shape of each reso-
nance or notch, it is coavenient to use the filter’s polar
representation {10}. For a single second-order section we
get

1= 2R, ;cos{wp ;)z™" + R} ;272
1= 2R, ; cos(wy ;)z=! + RZ ;2~2

Hiz)=g

i == section number, r = resonance, n =notch, ¢ = gain,
R = pole or zero radius, w =resonance or notch frequency
in radians = 2xf/f,, [ = ceater {requency in Hz, f, =
sampling rate in 2.

By specilying w,; we control the center frequency of
the resonance, and with R, ; the gain at the peak and the
bandwidth of the resonance. To control the notch we use
w,,',- and R,,"'. h .

Fig. 8 shows the [requency response of a fourth-order
filter, constructed by cascading two second-order pole-zero
sections. It fits approximately the noise spectrum of Fig. 7.

HRCNITUDE «DB)>

Flgure 8. Frequency response of a fourth-order Giter that ap-
proximates the spectrum of Fig. 7. resonances: f, ; == 2000H z,
R,y == .9, f, 2 == 4000/{z, R, 3 == .064; notches: fa,; == S000H z,
R.,l b .93. f..,z -— 8000!{2, Ru.z -8,

2.2, Resonator model

A tube, closed at one cnd, can be modeled by the struc-
ture of Fig. 9. It consists of two delay lines, each one
supporting one quarter of a period of the input waveform
propagating in opposite directions, a lowpass filter, FI(z),
to simnulate the reflection of the closed termination, and a
multiplication by —1, to simulate the wave inversion that
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takes place at the open end of the tube.

""“——'{ Delay,Line, F/é
-1 ¥ m

Our.p-u1___l

Dalay Line. P/4 }

Figure 9. Block diagram for the resonator model. I' is the
period.
Using the simplification of the Karplus-Strong algorithun

we can convert the structure of Fig. 9 into the structure of
Fig. 10.

PLT T —
"~ 'l Dalay Linse, /2
) m

OCutpuc ¢

Figure 10. Block diagram for the simplificd resonator model.

The structure in Fig. 10 is practically the same as the
Karplus-Strong model for the plucked string, the only dilfe-
rence is that in our case the delay line is hall as loug in
order the get only the odd partials. We can use all the
extensions that Jaffe and Smith {3] did to the plucked string
algorithm. Important -exteasions to implement are: the
tuning, decay time shortening, aud Jdecay time stretch,..q.
The resonator has to be tuned to the exact same frecaency
as the fundamental of the bar, and the structure of I'ig. 10
gives a crude tuning, especially at high frequencies. Jafle
and Smith use an allpass filter in the feed-back loop to make
up for the difference hetween the (requency gives by that
structure and the desired frequency. It is also impoitant
to have control over the decay time for a more realistic
simulation as well as for musical flexibility. I3y contrulling
the coefficients of the lowpass filter [/{z), Jaflc and Smith
are able to specily the decay time, or, in our case, the
resonating time.

2.3. Mallet-bar-resonator coupling

By putting togetlier all the scctions, the structure of Fig.
11 is obtained. To control the mallet-bar intcraction we
need to change the amplitude envelopes of the sinusoidal
generators (OSC) and the amplitude of the noise generator.
Mallet velocity, position of the strike, and type of head
(hardness and size) can all be simulated in this way. The
bar-resonator connection is controlled just by spe-ifying the
amouat of the bar output that goes into the resonator.

V
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Figure 11. Dlock diagram of the overall model in a MUSIC
V-like notation.

3. Cunslnsion

A computer model for bar percussion instruments has
been presented which, at low cost, captures the most musi-
cally important as'pects of the real instruments. Different
methods were integrated into a unity, cach one capturing
4 speeific aspect of the sound.

By combining Discrete Fourier Transform methods (phase
vocoder) and filter techniques (ex. linear prediction), we can
analyze and model sounds in situations when each one of
the techniques separately cannot give good results. This is
especially appropriate for sounds that have a deterministic
component plus a non-deterministic one.
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