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Multi-layered polyrhythms have appeared frequently in Western music of the past century. Such
rhythmic combinations can display surprising, emergent forms of perceptible order. In this essay,
I explore the objective and perceived characteristics of two such stratified rhythmic structures. The
first of these, a divisive polyrhythmic array, superimposes ‘‘tuplets’’ of progressively higher order, each
subdividing a common basic duration. In the second structure, a multiplicative polyrhythmic array, the
inter-attack durations in successive rhythmic layers are progressively higher multiples of a common
basic duration. Each of these array types exhibits characteristic composite features that are readily
audible in performances and visible in scores, including patterns of attack coincidences and arpeggia-
tions traversing multiple rhythmic layers. Mathematical modeling of the arrays elucidates such
features. I conclude with a detailed analysis of a composition by James Tenney in which polyrhythmic
arrays of both sorts supply fundamental musical material, and whose formal design involves a tran-
sition between the two array types. A detailed correspondence between pitch and rhythmic structures
in that work is also examined.
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introduction

E
xample 1 reproduces two diagrams from Henry
Cowell’s seminal text New Musical Resources.1 The one
on the left illustrates how the wavelength of the nth

superimposed partial of a harmonic complex tone evenly divides
the wavelength of its fundamental into n parts.2 With the dia-
gram on the right, Cowell proposed analogously superimposing
subdivisions of a rhythmic value. He later co-developed with
inventor Léon Theremin a mechanical device—dubbed the rhyth-
micon—capable of accurately executing music whose pitches and
tempi each displayed such multi-layered rational relationships.3

As a consequence, these sorts of layered divisive polyrhythmic
structures are sometimes referred to as rhythmicon relationships.

Often reflecting Cowell’s influence, stratified polyrhythmic
structures have since assumed a vast array of compositional
manifestations, especially in North America.4 Perhaps the most

widely known and varied examples are found in Conlon Nan-
carrow’s fifty-one Studies for Player Piano, most of which employ
complex rational tempo relationships.5 Further examples appear
in the music of composers as stylistically diverse as Elliott
Carter,6 Ben Johnston,7 Larry Polansky, John Luther Adams,
David First, and many of the New York-based ‘‘totalist’’ com-
posers of the 1980s.8 (Example 2[a]–[c] shows some instances.)
Diagrammatic representations of such structures appear in the
writings of Karlheinz Stockhausen9 and Carter.10 More
recently, composers Philip Blackburn, Janek Schaefer, Matthew
Burtner,11 Annie Gosfield, Nick Didkovsky, Robert Norman-
deau, and others have imagined new ways to use rhythmicon
relationships.12 Jim Bumgardner’s online ‘‘Whitney Music Box’’
is an elegant example of an audio-video rhythmicon.13 Readers
may wish to try creating custom rhythmicon structures them-
selves using the user-programmable ‘‘Online Rhythmicon,’’ cre-
ated by Didkovsky.14

* I thank Dmitri Tymoczko for his helpful responses to earlier versions of this
paper and Clarence Barlow for making available his recording of the
extended version of Tenney’s Spectral CANON.

1 Cowell ([1930] 1996, 47–48).
2 A harmonic complex tone is a collection of sinusoids, all of whose frequencies

are positive integer multiples of some fundamental frequency or, equivalently,
all of whose wavelengths are integer subdivisions of some fundamental
wavelength. Most definitely pitched musical tones are well modeled as
harmonic complex tones. See Roederer (1995, 60).

3 Smith (1973, 134).
4 Other catalysts for the appearance of complex polyrhythms in contemporary

Western music have included the influence of non-Western musics, late
medieval Western music, observations of coincident but independent sound

sources, and various structuralist approaches to rhythm. The structures
examined in this paper are ones that relate particularly closely to Cowell’s
analogy from the makeup of complex tones.

5 Gann (1995, 5–8).
6 Bernard (1988); Carter (1977, 292–94).
7 Von Gunden (1986, 68–70).
8 Gann (1997, 189) and (2006, 127–29).
9 Stockhausen (1957 [1959], 17, 27).
10 Carter (1977, 294).
11 Burtner (2005).
12 The Art of the Virtual Rhythmicon (2006).
13 Bumgardner (n. d.). For further documentation, see Bumgardner (2009).
14 The Online Rhythmicon (n. d.).
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example 1. Cowell’s analogy between the wavelengths of harmonic partials and the regular rhythmic subdivisions of a musical duration, as
illustrated by two figures (redrawn) from Cowell ([1930] 1996). The typesetting and alignment of elements follow those found in Cowell’s

book. Reprinted with the permission of Cambridge University Press.

example 2.Multilayered divisive polyrhythms appearing in selected compositions: (a) Ben Johnston, String Quartet No. 4 (1973). Copyright
1990 by Smith Publications, Sharon, VT. All rights reserved. Used by permission. (b) John Luther Adams, Earth and the Great Weather
(1993). Copyright 1993 by Taiga Press, Fairbanks, AK. All rights reserved. Used by permission. (c) Elliott Carter, String Quartet No. 5

(1995). Copyright 1995 by Boosey and Hawkes, New York, NY. All rights reserved. Used by permission.
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Particularly clear examples of such polyrhythmic structures
appear in the music of American-Canadian composer James
Tenney (1934–2006), in works such as his Spectral CANON for
CONLON Nancarrow (1974) for harmonic player-piano; Three
Harmonic Studies, III (1974), for small orchestra; Septet (1981/
1996) for six electric guitars and electric bass; Spectral Variations
I–III (1991/1998) for computer-driven piano; and Song ’n’

Dance for Harry Partch, II: ‘‘Mallets in the Air’’ (1999), for
adapted viola, diamond marimba, strings, and percussion.15

Example 3 presents graphic scores for the opening and con-
clusion of Tenney’s Spectral CANON for CONLON Nancarrow
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example 3. Graphic scores for the (a) beginning and (b) end of James Tenney’s Spectral CANON for CONLON Nancarrow. (See MTS
online to listen to the original 1974 recording of the complete work.)

example 2. [Continued]

15 Readers interested in a more general introduction to Tenney and his work
may wish to consult Polansky (1983) and Hasegawa, ed. (2008).
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with dots representing attacks. Despite the gradual ritardando
evident in Part (b), it is clear that at the work’s close the re-
iterations of any given pitch evenly subdivide those of the lowest
pitch, thus displaying the classic rhythmicon relationships
illustrated in Example 1. I will henceforth refer to this particular
type of multi-voice rhythmic structure as a divisive (polyrhyth-
mic) array.

Part (a) of Example 3 exhibits a structure different from any
of those mentioned above, wherein the time-interval between
two successive attacks of any given pitch is a fixed multiple of the
inter-attack duration for the lowest pitch. I refer to such a rhyth-
mic structure as a multiplicative (polyrhythmic) array. Multipli-
cative arrays, unlike divisive ones, appear only occasionally in the
musical literature; for instance, Carter diagrams the rhythmic
structure of the introduction to his Double Concerto (1961) as
the superimposition of a partial divisive array and a partial
multiplicative array.16 Other examples include Philip Corner’s
Gamelan II (1975),17 and Carter Scholz’s Rhythmicon I (1988).18

In this essay, I will elucidate features of divisive and multi-
plicative polyrhythmic arrays as paradigmatic structures capable
of various compositional manifestations. I begin by introducing
appropriate theoretical machinery for the description of such
textures in Sections 1 and 2 below. Section 3 applies the re-
sulting conceptual framework in a detailed analysis of Tenney’s
Spectral CANON for CONLON Nancarrow. Supporting math-
ematical details that are inessential to the exposition have been
placed in the Appendix.

1. divisive arrays

Example 4 illustrates a canonical divisive array on two dif-
ferent ranges of the horizontal axis, showing that the array is
periodic with a period of one. Elapsed time, x, increases from
left to right in the examples, with each dot representing a sonic
attack. The units are arbitrary. Twenty voices in the array are
represented by horizontal strata and indexed by a voice number,
n, ranging from 1 to 20.19 The location in time of an attack
depends both on n and on its attack number,m, which is its order
number within that voice. (In other words, reading from left to
right,m ¼ 1 for the first attack within any given voice,m ¼ 2 for
the second attack, etc.) Since the nth voice subdivides the unit of
time into n equal durations, the time of the mth attack within
that voice is

xðm;nÞ ¼ m=n;

which I will take to be the defining equation of a canonical
divisive array.

Consider a time xðm;nÞ ¼ m=n; where m=n is a reduced
rational number.20 For any positive integer k, xðkm; knÞ ¼
km=kn ¼ m=n ¼ xðm;nÞ so that voice number kn also attacks at
time x. That is, n is the lowest voice number among the voices
attacking at time x and the other voices attacking at that time are
precisely those whose voice numbers are multiples of n. In
particular, when Voice 1 attacks, all other voices attack simul-
taneously with it.
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example 4. Canonical divisive polyrhythmic array: (a) between
0 and 1; (b) between 0 and 5.

16 Carter (1977, 294).
17 Lely (2012, 172, 174).
18 Schneider (2003).
19 The structural correspondence to the conclusion of Tenney’s Spectral

CANON is visible (cf. Example 3[b]) since, in that composition, each
voice reiterates only a single pitch. Strictly speaking, however, pitch is not
represented in Example 4 since, in other musical contexts, any single voice
may present a variety of pitches.

20 A rational number is any number expressible as a quotient of two integers
(i.e., a fraction) with the denominator not equal to zero. A rational number
is said to be in lowest terms or reduced form when its numerator and
denominator have no common divisors greater than one (i.e., where all
common factors have been ‘‘canceled’’ from the numerator and
denominator).
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1.1. rhythmic farey sequences

The Farey sequence of order N is the increasing sequence FN

of all reduced rational numbers in the interval from 0 to 1 having
denominators less than or equal to N. The first few Farey se-
quences are listed below, and the sixteen lowest-order Farey
sequences are illustrated in Example 5.
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An extended Farey sequence is the periodic extension of a Farey
sequence into the non-negative rational numbers. For instance,
the extended Farey sequence corresponding to F2 is
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TheNth order extended Farey sequence can be thought of as the
aggregate sequence of all attack times in the lowest N voices of
a canonical divisive array (or, referring to Example 4, as the
projection onto a horizontal axis of all attacks in those voices).21

A comparison between Examples 4 and 5 should help to make
this clear.

The terms in a Farey sequence exhibit a number of inter-
esting regularities and interrelationships, but I will mention
(without proof) only the few that are needed here.22 First, it is
the case that no two consecutive Farey fractions have the same
denominator. Next, consider three consecutive reduced Farey
fractions in FN: m1=n1 < m2=n2 < m3=n3. Then

m2

n2
¼ m1 þ m3

n1 þ n3
;

which is the Farey mediant of m1=n1 and m3=n3. Moreover, FN

can be recursively constructed by inserting between each pair of
successive terms in FN-1 their Farey mediant whenever its
denominator is no greater than N. Thus F4 can be constructed
from F3 by inserting 1=4 between 0=1 and 1=3, and also in-
serting 3=4 between 2=3 and 1=1, but omitting the Farey
mediant 2=5 between 1=3 and 1=2 and the Farey mediant 3=5
between 1=2 and 2=3 (although these omitted fractions find
a rightful home in F5, as shown in Example 5).

Now consider a Farey fraction m0=n0 in FN, its two imme-
diate neighbors in FN, and the Farey mediants between it and
each of those neighbors. The interval between the two mediants
is called a Farey arc. It obviously includes the Farey fraction in
question but no others in FN, while the collection of these non-
overlapping Farey arcs covers the interval from 0 to 1. It is
further possible to establish bounds on the length of each Farey
arc.23 For N > 1, each side of the arc containing the Farey point
m0=n0 has a length between

1

n0ð2N � 1Þ and
1

n0ðN þ 1Þ :

The lower bound is particularly significant since it shows
that, for a given N, reduced fractions of a lesser denominator n0
are better separated from their neighbors than reduced fractions
of a relatively greater denominator. Martin Huxley offers the
vivid analogy of gravitational lensing ‘‘in which the images of
faint stars are displaced away from a nearby bright star.’’24 This
property of the rational number system is visible in both
Examples 4 and 5 where, for instance, Farey fractions with
denominators less than or equal to 3 (e.g., 1/1, 1/3, 1/2, 2/3,
etc.) appear flanked by particularly sizable empty ‘‘buffer
zones.’’25
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example 5. Farey sequences of order one through sixteen plotted as
points.

21 Strictly speaking, an extended Farey sequence contains a term at zero,
whereas the divisive polyrhythmic arrays of Example 4 do not (for
reasons of convenience) in the musical analyses to follow.

22 Readers interested in a rigorous dedicated treatment of Farey sequences
may wish to consult Hardy and Wright ([1938] 1979, 23–31).

23 Ibid. (30).
24 Huxley (1996, 8).
25 In addition to its relevance for this rhythmic analysis, the boundedness

property of Farey arcs has important implications for harmonic
perception, since it implies that reduced frequency ratios of relatively low
denominator (i.e., strong sensory consonances) tend to be comparatively
well separated from one another in the set of all possible frequency ratios
ordered by size. For example, there is no other ratio of comparable
consonance in the immediate neighborhood of either a 2:1 octave or
a 3:2 just fifth.
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In rhythmic terms, an extended Farey sequence of order N is
generated by a polyrhythm comprising superimposed tuplets of
all orders up to and including N-tuplets. If more than a few
voices are present, and the unit time-duration is in the range of
2–8 seconds, the relatively large number of voices attacking
concurrently at times corresponding to reduced fractions with
low denominators usually makes audible some relatively simple
polyrhythmic accentuation patterns within even a very complex
aggregate texture. Attacks falling on less strongly accented time-
points tend to create a superimposed stochastic rhythm, but
fluctuations in the attack density impart noticeable rhythmic
qualities.

For large N, the edges of the larger Farey-arc ‘‘buffer zones’’
are delineated by closely spaced attack successions whose tem-
poral density decreases away from these zones, typically produc-
ing an accelerating attack sequence before the buffer zone and
a decelerating sequence after it. The ends of these accelerandi,
and the beginnings of the ritardandi, may supply points of
rhythmic emphasis. Particularly salient are the attacks delineat-
ing the large buffer zones near integer time-values. For instance,
when the array is limited to N ¼ 7 voices it is possible to detect
a septuplet pulse emphasized by the attacks at f1/7, 6/7, 7/7,
8/7, 13/7, 14/7, 15/7, . . . g.

Rhythmic Farey sequences figure in James Tenney’s Septet for
six electric guitars and electric bass.26 The work is divided into
five sections. The first of these is a seven-voice rhythmic canon
on a single pitch (a sounding A2). At the outset, successive
voices enter at intervals of two measures. Each voice progresses
step by step from simple to more complex tuplets, changing
every two measures so as to divide the constant measure-
lengths into successively shorter durations. Example 6 shows
the resultant texture in mm. 17–20.

The uppermost part (Guitar 1) leads the rhythmic canon
with the lower ones following in turn, each effectively passing its
rhythm to the instrument below it in the score at two-measure
intervals. The resulting aggregate attack patterns are Farey se-
quences of steadily increasing order. Example 6 shows that they
are eighth order in mm. 17–18 and ninth order in mm. 19–20.
The composer has omitted attacks in faster-moving voices
whenever they would coincide with an attack in a slower-
moving voice. This prevents the simpler embedded tuplets from
being accentuated by attack coincidences, thus increasing uni-
formity in the rhythmic texture. Additionally, the tutti attack at

example 6. Measures 17–20 of Septet (1981/1996) by James Tenney. Copyright 1996 by Sonic Art Editions. All rights reserved. Used by
permission of Smith Publications, Sharon, VT. (See MTS online to listen to this excerpt.)

26 Septet (1981/1996) is recorded on Josel (1998), and also on Cocks Crow,
Dogs Bark: New Compositional Intentions (1997).
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the beginning of each measure—where the downbeat would
otherwise likely be heard—is omitted entirely, further heighten-
ing the ambiguity of the rhythm so that the perceived downbeat
can be heard at either the beginning of a measure or at the first
attack in the measure. In either event, at the marked tempo the
attack ritardandi and accelerandi flanking barlines are audible
with less-orderly stochastic rhythms intervening.27

1.2. flanking curves and outside-voice profiles

Additional considerations arise when the individual voices of
a divisive array are aurally discriminable (due, for instance, to
registral segregation). Noteworthy features of the canonical
divisive arrays in Example 4 include the families of rising and
falling curves visible near integer values of the time-coordinate.
Close inspection of the examples reveals that the array points
also describe families of such ‘‘flanking curves’’ about
any rational-valued vertical asymptote. The family around
time-value x ¼ 1=2 is illustrated in Example 7(a), while
Example 7(b) reveals the less conspicuous family around
x ¼ 2=3. The points on these flanking curves near their asymp-
totes correspond to the attack accelerandi and ritardandi flanking
the evacuated Farey-arc buffer zones of Example 5, but here it
can be seen how these rhythmic figures glissade across distinct
voices and how flaring buffer zones broaden with decreasing
voice number.

Explicit formulae for these flanking curves and the Farey
points thereon are derived in the Appendix. Here it will suffice
to note a few of their salient properties. Observe, for instance,
that the flanking curves about x ¼ 2=3 are steeper than those
about x ¼ 1=2, which in turn are steeper than those about
x ¼ 0. In fact, it is shown in the Appendix that the larger the
asymptote’s denominator n0, the steeper will be the flanking
curves about it (i.e., the more rapid will be the glissandi).

Examination of Example 7 reveals that not every voice nec-
essarily attacks on a given flanking curve. In fact, it is shown in
the Appendix that, for a flanking curve about asymptote m0=n0,
only one out of every n0 values of n will be associated with
a point on the curve. Correspondingly, the most strikingly vis-
ible curves in Example 4(a) flank integer values of x (i.e., values
for which n0 ¼ 1) since every voice attacks on each of these
curves. On the other hand, it can be seen in Example 7 that, on
any given curve flanking x ¼ 1=2, only every second voice at-
tacks (since the asymptote’s reduced denominator is n0 ¼ 2),
while on a curve flanking x ¼ 2=3 only every third voice attacks. Furthermore—and importantly for Section 1.4 to follow—over

successive flanking curves the set of attacking voices exhibits
a cyclical pattern with period n0. For instance, Example 7(a)
shows that even-numbered voices attack on curves with even
indices j, while odd-numbered voices attack on curves with odd
indices j ; i.e., the pattern of attacking voices is cyclical with
period n0 ¼ 2.

An elegant characteristic of divisive arrays is the manner in
which different flanking curves share attacks. In Example 7(a),
for instance, the descending curves flanking x ¼ 0 can be seen to
share attacks with the ascending curves flanking x ¼ 1, as well as
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example 7. Families of flanking curves embedding the canonical
divisive array about rational abscissae at (a) 1/2, and (b) 2/3; the

integer j indexes distinct curves.

27 Note that in mm. 19–20 an aggregate attack pattern is articulated that
represents a complete ninth-order Farey sequence (apart from the omitted
tuttis), even though only seven instrumental parts are employed. This is
accomplished by having Guitar 6 in mm. 19–20 play two canonic voices: the
attack time-point union of the Guitar 5 and Bass parts from mm. 17–18.
Thus Guitar 6 plays not only the attacks that Guitar 5 played in the previous
two measures, but also those attacks that Guitar 5 ‘‘omitted’’ in order to
avoid coincidences with the bass. This approach is extended to the end of
the section (m. 26), where a complete twelfth-order Farey sequence is
presented.
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with the curves (both ascending and descending) flanking
x ¼ 1=2. Moreover, the Appendix shows that every descending
curve asymptotic to a Farey fraction in FN intersects at an attack-
point with every ascending curve asymptotic to the succeeding
Farey fraction in FN (whatever the value of N ). This is musically
significant if these curves function as auditory streams, since the
ear can thus move easily from a descending-voice glissando to an
ascending one at many different points of intersection, the tim-
ing perhaps being indeterminately subject to volition and/or
happenstance.

Other aspects of a divisive array with potential perceptual
significance include the sequences of highest and lowest
sounding voices. The sequence of the latter in anN-voice array is
the sequence of denominators in the associated Farey sequence
FN, which displays the same periodicity and symmetry as the
Farey sequence itself. The sequence of highest sounding voices is
that of the greatest multiples (not exceeding N ) of the Farey
sequence denominators. The profiles of highest and lowest
voices for a divisive array with N ¼ 12 voices are shown in
Example 8. The area between these profiles is filled with gray as
an aid to visually discerning them and the varying distance
between them. Note that for the highest points on the j ¼ �1
curves flanking rational abscissas of low denominator (i.e., in-
tegers and half-integers), the lowest-voice and highest-voice
curves coincide for multiple successive attacks. This promotes
the hearing of these glissandi as prominent and unambiguous
features of the musical texture.

1.3. other manifestations of divisive arrays

Divisive arrays also make appearances in connection with
some well-known acoustical and psychoacoustical phenomena.
Consider the natural harmonics of a string excited at one end:
when the string is lightly touched at a reduced fraction x ¼ m=n
of its length, it sounds its nth harmonic and all multiples thereof.

Thus the canonical divisive array of Example 4(a) illustrates the
locations and harmonic numbers of all natural string harmonics
if the abscissa between 0 and 1 is interpreted as the spatial extent
of the string (rather than musical time).

Another acoustical example involving a divisive array is
provided by the combination of two complex tones having
slightly different fundamental frequencies. If the frequency
difference between the fundamentals is f2 � f1, then the fre-
quency difference between nth harmonics is nf2 � nf1 ¼
nð f2 � f1Þ. Tones acoustically beat against each other at a rate
equal to the difference of their frequencies, so the nth harmonics
therefore beat n times faster than the fundamentals. If we
assume that all partials begin in cosine phase (i.e., with wave-
form crests aligned) and regard each pair of beating partials as
a ‘‘voice,’’ then the times of peak constructive interference
between nth partials are described by the canonical divisive array.
If the beating is sufficiently slow, the audible result is the
‘‘phaser’’ effect familiar to electric guitarists, with its character-
istic harmonic glissandi across registers.

1.4. consecutive-voice subsets

This section presents a particular application of the formal-
ism introduced above. The divisive arrays discussed thus far are
all complete in the sense of containing all voices from Voice 1
through some maximum Voice N. Farey sequences and flanking
curves, however, are also useful concepts for modeling certain
interesting subsets of complete arrays. Example 9 shows several
such structures, in which the set of voice numbers comprises
consecutive integers. Only the first half of each rhythmic cycle is
shown (up to time x ¼ 1=2), the second half being retrograde-
symmetric with respect to the first. In addition to the dots
representing attacks, the figures include the visible segments
of flanking curves about selected rational asymptotes.

The following discussion broaches the perceived rhythmic
structure of such partial divisive arrays under the assumptions
that (a) register increases with voice number, (b) the individual
voices are consistently discriminable via registral separation, (c)
the performance tempo is not so great that the temporal re-
lationships between attacks in distinct voices become difficult to
perceive, and (d) the total number of voices involved is small
compared with their voice numbers, n. Audio mockups of these
polyrhythms are easily made using commonplace notation
software or Didkovsky’s ‘‘Online Rhythmicon,’’ and the reader is
strongly encouraged to listen to them in conjunction with the
following discussion. Listeners who have not previously heard
such large-scale polyrhythms are often surprised by the internal
rhythmic structures they reveal.28
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example 8. A divisive array with twelve voices showing profiles of
highest and lowest voices with the area between them filled in gray.

28 For audio mockups of Example 9(a)–(d), durations of roughly 45 seconds
for one complete polyrhythmic cycle are recommended. This may be
compared with other durations in the range 10–80 seconds. It should be
kept in mind, however, that the combination of a sufficiently fast tempo
with a large registral separation between voices will make it impossible for
the ear to judge the temporal relationships between attacks in distinct voices
(see Moore [1997, 262]).
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It is instructive to examine how the audible rhythmic orga-
nization of the polyrhythm depicted in Example 9(c) evolves,
beginning from its outset. Initially, all four voices attack in
unison. As time x increases and the attack times of higher and
lower voices diverge, this compound attack is repeated with
a periodicity equal to that of the highest voice and with a grad-
ually lengthening downward arpeggiation. That is, individual
attacks within each arpeggio are separated by relatively small
(but increasing) intragroup time-intervals. Concurrently, the
end of each four-attack arpeggio is separated from the beginning
of the next by a larger (but decreasing) intergroup time-
interval.

As the attacks in the highest and lowest voices gradually
converge in time, the intragroup and intergroup time-intervals
become increasingly similar, until a threshold is reached at
which the rhythm undergoes a striking qualitative transforma-
tion from a succession of composite-but-autonomous arpeggian-
do attacks (a metrical ‘‘one-feel’’) to a sequence of individual

attacks cycling periodically across the four voices (a metrical
‘‘four-feel,’’ with a ‘‘downbeat’’ imparted by the pitch accent of
the uppermost voice). As the figure suggests, this change can be
understood as the result of moving from a rhythmic structure
governed by flanking curves about x ¼ 0 to one governed by
flanking curves about x ¼ 1=4. The attack groups of the opening
arpeggios correspond to sets of attacks residing together on
single flanking curves about x ¼ 0. Near the qualitative transi-
tion point, their intragroup attack-time intervals become the
intergroup attack-time intervals of the new metrical structure
organized about x ¼ 1=4. In this new structure, each ‘‘attack
group’’ comprises just a single attack. (In other words, there is
one attack per flanking curve, since there are only four voices
present and—in accordance with the discussion of Section 1.2—
only every fourth voice attacks on flanking curves about any
reduced rational asymptote with a denominator of n0 ¼ 4.)
These time-feels, as I hear them, are indicated using brackets
above the figure.
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example 9. Examples of consecutive-voice subsets of divisive arrays. The horizontal axis represents time x, while the vertical axis represents
voice number n. The locations of important asymptotes are marked along the time-axis. (SeeMTS online to listen to Example 9[a]–[e].online.)

56 music theory spectrum 34 (2012)



Later, attacks in the highest (fastest) and lowest (slowest)
voices again approach alignment. This initiates a passage of
triple meter organized about asymptote x ¼ 1=3. The transition
features a metrical elision, wherein the last attack of a four-
pattern becomes a grace note preceding the downbeat of a new
three-pattern. The location of this new downbeat coincides with
the attacks of the uppermost voice. These attacks possess a pitch
accent due to their height, strongly reinforced by a dynamic
accent appearing in every third attack group and imparted by
two near-coincident attacks. As mentioned in Section 1.2, on
a flanking curve about an asymptote with reduced denominator
n0 only every n0th voice attacks, and the attacking voice-sets
cycle across successive flanking curves with a periodicity equal
to n0. Here only four voices are present, so attacks near asymp-
tote x ¼ 1=3 cycle through a repeating pattern in which Voices
20 and 23 both attack on a single flanking curve, followed by the
other two voices attacking individually on successive curves.
Finally, about x ¼ 1=2 a duple meter emerges as attacks in odd
and even voices, respectively, move toward alignment with one
another.29

Example 9(a)–(d) shows array subsets with the total number
of voices N 0 ranging from two to five. Asymptotes having de-
nominators less than or equal to N 0 are shown in each case.
Since higher-denominator asymptotes always possess some
flanking curves without any sounding attacks on them, their
associated meters are less likely to be heard.30 Thus the number

of distinctly perceptible metrical regions increases with increas-
ing numbers of voices, while the sequence of relevant asymptotes
in each case corresponds to Farey sequence FN 0 and the sequence
of meters corresponds to the denominators thereof. Since no two
consecutive Farey denominators are equal, successive regions
always possess different meters.

At each metrical transition, either the intragroup time-
intervals on the flanking curves about one asymptote grow to
become intergroup time-intervals between attack groups on
flanking curves about a new asymptote, or the reverse transfor-
mation occurs. Analyzing the relative sizes of these intervals and
assuming that the total number of voices N 0 is small compared
to the voice numbers involved, the Appendix shows that

1. such metrical transitions occur roughly when the current
attack is fewer flanking curves away from the next Farey
asymptote than from the previous one, and

2. the location in time of such a transition is roughly equal to
the Farey mediant between the new asymptote and the old
one, so that the extent of a metrical region corresponds to
the Farey arc containing its asymptote.

These boundary locations are mere estimates. In practice, the
precise perceived location of a metrical transition is influenced
by the particular local details of the attack pattern, and may in
fact be somewhat variable or subjective if the local attack-time
intervals are large enough to render attack grouping ambiguous.
Furthermore, the ear is typically reluctant to abandon a well-
established metrical interpretation for a new one, a disposition
that tends to delay such transitions (as illustrated by the brackets
above Example 9[c]).

When the number of voices N 0 is not small compared to the
voice numbers involved, the analysis becomes less straightfor-
ward. Among the complicating issues is the fact that intragroup
attack-intervals increase in the lower region of a flanking curve,
undermining attack-group cohesion. Another factor is that, in
order for a metrical region to be perceptually established, the
Farey arc delimiting it should be at least wide enough to accom-
modate one full period of the associated attack pattern. This
period, however, is equal to the attack period of the highest
voice (1=nmax), while the bounds given for the Farey arc width
in Section 1.1 are independent of nmax, instead varying with the
Farey denominator n0 and the order of the Farey sequence (here
N 0, the number of voices). Thus, as nmax decreases, higher-order
metrical regions may fail to be perceptually established. Instead,
they may be absorbed by neighboring metrical regions associated
with lower-denominator asymptotes, fragment into various
small rhythmic groupings, or (upon a first hearing) result only
in a sense of metrical uncertainty.31

29 The foregoing alludes to five distinct hierarchical levels of perceptible
rhythmic groupings. These are listed below in order from the most local
to the most global:

1. individual attacks;
2. attack groups residing together on a single flanking curve, and having

the character of arpeggiando figures or grace notes preceding or
following a metrically stronger main attack;

3. a constant periodicity equal to that of the highest voice, which is
variously subdivided into ‘‘tuplets’’ by the cyclical patterns of voices
presented in the succession of attack groups;

4. the irregularly spaced transitions between these different n0-tuple
meters, which correspond to transitions between sets of flanking
curves about asymptotes of different reduced denominators n0;

5. the periodicity of the polyrhythm as a whole, which in Example 9
corresponds to unity.

If n0 ¼ 1, then levels 2 and 3 coincide as a single level, as at the opening
of Example 9(c). Whenever n0 equals the total number of voices then levels
1 and 2 coincide, since each attack group comprises only a single attack such
as, for instance, about the asymptote x ¼ 1=4 in Example 9(c). On the other
hand, if a level-2 rhythmic grouping comprises four or more rhythmic units
at level 1, then an additional level may appear between levels 1 and 2 if these
units perceptually begin to group into twos and threes, as typically occurs.
For the same reason, an additional level may sometime appear between
levels 2 and 3.

30 Such metrical regions may sometimes be audible if they are wide enough to
contain one or more complete metrical cycles. For instance, in Example
9(c), some listeners may detect a ‘‘5-feel’’ near x ¼ 1=5 imparted by four
attacks and a ‘‘rest.’’ Similarly, in Example 9(a), listeners may be able to
detect a ‘‘3-feel’’ near x ¼ 1=3 comprising multiple 3-cycles with rests, and
even a ‘‘4-feel’’ near x ¼ 1=4 as well.

31 According to the Farey arc-width bounds, a full metrical period will defi-
nitely fit within the Farey arc in question whenever

nmax >
n0ð2N 0 � 1Þ

2
:
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Such complications notwithstanding, Farey asymptotes and
flanking curves remain a potential aid in the analysis, audio-
lization, and performance of low-voice-number polyrhythms by
organizing their individual attacks into broader features. Exam-
ple 9(e) shows that most attacks in an 8:7:6:5 polyrhythm can be
regarded as falling on curves flanking x ¼ 0. I hear this rhythm
as being organized by the regular ‘‘beat’’ of the uppermost voice,
relative to which the following features are scheduled: 1) an
initial tutti attack, 2) two four-note decelerating arpeggiations
(each beginning on the beat and descending stepwise across the
four voices) with the second slower than the first and with
a slight additional gap between them, 3) two notes straddling
the last attack of the second arpeggiation, the first of which
marks the top-voice beat, 4) a simultaneous dyad on the beat
(not involving the last two voices heard), and commencing 5)
a retrogression of all the preceding events.

2. multiplicative arrays

Unlike the canonical divisive array, the period of the
canonical multiplicative array depends on the total number of
voices present and increases without bound as this number in-
creases. Individual voices, however, are periodic: Voice n attacks
concurrently with every nth attack of Voice 1, which attacks at
each positive integer value of the time variable x. Thus the time
of the mth attack within Voice n is xðm;nÞ ¼ mn, which con-
stitutes the defining equation of the canonical multiplicative array.

Obviously, a voice in a multiplicative array attacks at time-
value x ¼ mn if and only if its voice number n divides x; i.e., the
voices attacking at any given time x are precisely those whose
voice numbers divide x. Furthermore, successively higher voices
enter at unit time-intervals; i.e., Voice n first attacks at time
xð1;nÞ ¼ n. Therefore, we may also say that voices attacking
simultaneously are those whose voice numbers divide the voice
number of the just-entered highest attacking voice, Voice x.
When the voice number of this new voice is a prime, for
instance, its entrance is accompanied only by Voice 1. These
properties are illustrated in Example 10(a).

Potentially audible features of the multiplicative array include
the straight lines described by the mth attack in each voice.
These lines fan outward from the origin in Example 10(a), each
ascending at a rate inversely proportional to m. Also visible are
other radiating linear patterns around time-values that have rel-
atively many divisors. In the example, one such pattern is
emphasized using dashed lines about time value x ¼ 24, which
has divisors f1, 2, 3, 4, 6, 8, 12g.32 The attacks delineating this
fan occur at nearby x values that share one of these divisors.

Particularly clear voice glissandi traversing successive voices on
successive attacks result whenever the focal x value has a sequence
of at least a few successive integers among its divisors. For
instance, this is the case for x values 12, 24, and 36, all of which
share the divisors 1, 2, 3, and 4, as shown in Example 10(a).
Such voice glissandi usually involve low voice numbers, since
these appear most often as divisors.

Another feature of multiplicative arrays becomes increasingly
visible at higher x values: families of leftward-opening attack
parabolas, such as those illustrated in Example 10(b). The illus-
trated parabolas all have vertices residing on the curve y ¼ ffiffiffi

x
p

,
which is shown with a dashed line, but other families appear and
coexist at greater values of x.33 In Example 10(b), vertices occur
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example 10. Two details from the canonical multiplicative
polyrhythmic array: (a) Dashed lines mark voice glissandi about
time-value x = 24. Points within or on the border of the gray-filled

region model the opening of Tenney’s Spectral CANON for
CONLON Nancarrow. (b) A partial family of attack parabolas,

with the square-root curve indicated using a dashed line.

For n0 ¼ N 0 ¼ 5, this inequality is nmax > 22:5. In practice, however, even
this bound may not be sufficient to ensure that a definite meter is
perceived—on an initial hearing two metrical downbeats or even two full
metrical periods may be necessary rather than a mere single period. Thus, in
the polyrhythm of Example 9(d) the fleeting quintuple pattern near
x ¼ 2=5 can easily be subsumed by the following duple pattern.

32 Like the one about x ¼ 0, this fan-pattern actually has many radiating
blades, but only the three audibly prominent ones are marked on the figure.

33 Ventrella (n. d.) offers visualizations, modeling, and discussions of these
and other patterns among the integers.

58 music theory spectrum 34 (2012)



at times x that are alternately perfect squares (such as 64, 81, and
100) or near pronic numbers (which are products of two succes-
sive integers, such as 8� 9 ¼ 72 and 9� 10 ¼ 90). With the
exception of single attacks falling on a vertex, attacks are paired
in simultaneous dyads, one on each arm of a parabola, with the
average of their voice numbers always equaling the height of the
vertex. Because the time-intervals between dyads on a given
parabola increase (linearly) away from the vertex, attacks on
other nearby parabolas typically intervene between them. This
often makes individual parabolic arcs easier to see than to hear,
unless they are differentiated via some attribute other than pitch
alone (such as timbre). However, near a vertex the intervallic
convergence of dyads toward unisons or consecutive-voice dyads
may sometimes be heard. Example 10(b) also shows voice glis-
sandi in the lower voices, with a particularly prominent instance
appearing about time-value x ¼ 60.

Multiplicative arrays can be used to model a familiar (non-
rhythmic) acoustical structure. When a ‘‘harmonic series’’ is
sounded by distinct instruments assigned to successive partials,
it actually comprises a collection of complex tones, each of which
has its own harmonic spectrum; in other words, it is a collection
of individual harmonic series whose fundamental frequencies
also fall in a harmonic series. Suppose that individual complex
tones are indexed from lowest to highest by n. If frequency units
are chosen such that the lowest tone has unit fundamental fre-
quency, then the ensemble of sounding partials can be modeled
by a multiplicative array wherein each ‘‘voice’’ corresponds to
a single complex tone whose individual partials are indexed by m
and have frequencies x ¼ mn. In other words, the individual
complex tones correspond to the voices of Example 10(a), with
each individual harmonic series increasing in register from left to
right.

Multiplicative arrays feature in two compositions by Tenney:
Three Harmonic Studies, III and the first part of Spectral CANON
for CONLON Nancarrow. I have analyzed the former else-
where,34 and the latter is examined below.

3. spectral canon for conlon nancarrow (1974)

A classic example of process music, James Tenney’s Spectral
CANON for CONLON Nancarrow is one of the most distinctive
and arresting works in his large and varied compositional output.
Its design was begun years before the first realization and was
refined on a teletype terminal. Nancarrow himself punched the
final piano roll on his own roll-punching machine. Realization
was achieved in 1974 with assistance from composer Gordon
Mumma, using a player piano in Santa Cruz, California. Com-
mercial recordings of this realization are available, and a refer-
ence score and even a reproduction of the piano roll have also
been published.35

The work is a canon in twenty-four voices lasting roughly
three and a half minutes. Each voice of the canon is assigned
a different single pitch, which it repeats undampened again and
again (as shown in Example 3). The pitches used are the first
twenty-four harmonics of A1 (55 Hz), to which the required
piano strings are precisely retuned. The sequence of inter-attack
durations is identical in all voices, although the higher a voice is
pitched the later it enters—hence the canonic aspect. The dura-
tion sequence is monotonically decreasing at first, but once
a voice has sounded a specified number of attacks (a number
that is the same for all voices), the sequence begins to retrograde.
Only the lowest-pitched voice finishes its retrograde, the piece
ending at the moment when this happens. Clearly these pitch
and temporal resources are narrowly restricted in themselves, but
their interaction produces complex and surprising results.

The piece opens with A1 slowly repeated, its constituent
harmonics ringing above the low fundamental. As successive
voices enter, gradually ascending the harmonic series, poly-
rhythms emerge, which increase in complexity until the com-
bination of many chiming voices produces a welter of sound.
The strong beat initially supplied by the lowest voice gradually
becomes a steady drone as the repetition rate of its undampened
tone increases and the sense of unifying pulse temporarily dis-
appears. Slowly, however, a new and striking variety of order
creeps into the lower voices, as rising and falling glissandi sweep
progressively higher along the harmonic series, punctuated by
simultaneous attacks in multiple voices. These glissandi subsume
successively higher voices until, as they reach the highest, the
piece concludes dramatically with all twenty-four voices sound-
ing simultaneously for the first time. Due to perfect harmonic
fusion, the result is surprisingly perceived less as a chord than as
a single tone pitched at A1, which was, of course, the first pitch
heard at the opening. It is as though the constituents of this
single complex tone appear torn asunder in the core of the piece,
but are powerfully welded together again in its concluding
gesture.

There exists an unreleased longer version (502500) of Tenney’s
Spectral CANON dating from 1990, extended and realized by
composer Clarence Barlow using a computer-driven player
piano while he and Tenney were both professors at the Summer
Courses for New Music in Darmstadt, Germany. It continues
beyond the total simultaneity at the end of the original version,
allowing all voices to finish their retrogrades with voices falling
silent one by one in the order in which they first entered. Further
high-register glissandi and simultaneities are heard among the
remaining voices as they play out, the thinning textural density
allowing surprising melodies to gradually emerge. For reasons of
analytical convenience, the following study will address this
extended version of the piece (the conclusions will straightfor-
wardly apply to the shorter original version as well).

An analytical starting point can be found by observing that
the lowest voice in the graphic score of Example 3(a) qualitatively

34 See Wannamaker (2008, 102–5).
35 Recordings include Cold Blue ([1984] 2000), andDonaueschingen Musiktage

1994 (1995), as well as the audio cassette accompanying Tenney (1984). See
Example 3.online for an audio recording. The reference score is published

in Tenney (1976) and the reproduction of the piano roll is published in
Tenney (1984). Polansky (1983, 223–25) contains an analysis of the work.
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resembles a harmonic series turned on its side, its inter-attack
durations decreasing from left to right just as the pitch inter-
vals between successive harmonics diminish in size as the
series ascends (viewed in log-frequency space). Indeed, by the
composer’s own account, composition of the work involved
experiments with various juxtapositions of such ‘‘durational
harmonic series.’’36 By analogy with a harmonic series of
pitches, it is thus possible to speak of temporal intervals
(i.e., durations) such as temporal octaves within each canonic
voice. In particular, by direct measurement it can be confirmed
that this durational harmonic series is missing its lowest seven
‘‘harmonics’’ (i.e., attacks), so that it begins in its ‘‘fourth
octave.’’ Thus, as Polansky points out,37 the first eight sound-
ing attacks occur during a temporal octave of roughly 23.5
seconds, the following sixteen attacks over the course of a sim-
ilar interval, the following thirty-two attacks similarly, and so
forth. This is illustrated by Example 11, which provides an
expanded graphic score for the opening of the work.

Voice-entrance times also articulate a durational harmonic
series, with the same octave duration. In this case, however, the
series begins in its first octave, wherein a single new voice ap-
pears, while two voices enter in the second octave, and so forth,
as shown in Example 11. Note that, despite the exponentially
increasing rate of voice entrances, the pitch of entering voices
ascends linearly in time due to the logarithmic narrowing of
pitch-intervals within the harmonic series.

The compositional features described above are summa-
rized in the following four conditions, which fully specify the
pitch-time structure of Spectral CANON for CONLON
Nancarrow.

1. Numbering the voices from 1 to N¼ 24 beginning with the
lowest, the pitch of Voice n corresponds to the nth har-
monic relative to a fundamental of A1.

2. The rhythm in all voices is identical, apart from the
canonic delays, and displays retrograde symmetry, with

Voice 1 beginning its retrograde at the moment when Voice
N enters.

3. Just as in a harmonic pitch series, wherein the pitch interval
from the fundamental to a particular harmonic is given by
the logarithm of its harmonic number, the sounding attacks
of the forward portion of the attack-time sequence in Voice
1 occur at times

flog2 8; log2 9; log2 10; : : :g:

The time scale employed here uses units of temporal octaves
(not seconds) and a temporal origin located three temporal
octaves before the first attack of the piece.38 The temporal
octave c is a constant chosen such that the time-interval
between the first two sounding attacks is four seconds; i.e.,

c ¼ 4

log2ð9=8Þ
� 23:5 seconds:

4. The entrance of Voice n is delayed relative to that of Voice 1
by a time-interval of log2 n temporal octaves.39

In each voice, the initial seven attacks are presumably omitted
from the durational harmonic series on aesthetic grounds. Note
that, if they were retained, the time-interval between the first
and second attacks would be a full temporal octave of c�23.5 sec.
The following analysis is simplified by treating these missing
attacks as present but non-sounding. That is, I will locate my
temporal origin at the ‘‘fundamental’’ of the complete forward
durational harmonic series in Voice 1, but the reader should bear
in mind that in each voice the first seven harmonics of its tem-
poral fundamental (i.e., the first seven attacks) are notional, as
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example 11. Graphic score for the opening of Spectral CANON for CONLON Nancarrow. Time is measured in units of temporal octaves
relative to the temporal fundamental of Voice 1. Voices are numbered in italics at their entrances.

36 Tenney (2003).
37 Polansky (1983, 223).

38 All logarithms appearing in this article have base 2. Therefore, the unit of
pitch (or, here, duration) is always an ‘‘octave,’’ since log2ð2=1Þ ¼ 1. In
other words, the unit of pitch corresponds to a ratio of 2:1 in frequency.

39 Possible variations on these specifications suggest themselves, such as
reversing the order of voice entrances or beginning in each voice with the
‘‘retrograded’’ series of decreasing durations instead of the ‘‘forward’’ series
of increasing durations. In fact, Tenney composed three such Spectral
Variations (1991/1998), realized by composer Ciarán Maher and
premiered in 2007. These variations can be heard online (Maher [n. d.]).
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opposed to sounding. The same caveat applies to the last seven
attacks in each retrograde.

My analysis will initially ignore that the collections of
forward and retrograded attack-time sequences overlap in
time, instead treating them separately and referring to the
forward collection as SC1 and the retrograde as SC2. The
overall form of the work is diagrammed in Example 12,
where the gray vertical line represents the conclusion of
Tenney’s original realization. A complete graphic score of
the extended realization is given in Example 13 as algorith-
mically generated by the author from the foregoing
specifications.

example 13. Complete graphic score for Spectral CANON for CONLONNancarrow in Barlow’s extended 1990 version as algorithmically
generated from the compositional specifications. The vertical gray line marks the conclusion of Tenney’s original 1974 version. Attacks preceding
the oblique dashed line are in SC1 (i.e., are presenting forward durational series), while those following it are in SC2 (i.e., are presenting

retrograded durational series). (See MTS online to listen to the complete recording of Barlow’s extended version.)

real time
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example 12. Overall form of Spectral CANON for CONLON
Nancarrow in Barlow’s extended 1990 version. The gray vertical

line marks the conclusion of Tenney’s original 1974 version.
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3.1. analysis of sc1

Locating the temporal origin at the first notional attack in
Voice 1 and adding the initial time-offset for Voice n, we obtain
the following expression for the time xðm;nÞ of the mth attack in
Voice n in units of temporal octaves.40

xðm;nÞ ¼ log2 nþ log2 m ¼ log2 mn ð1Þ

The graphic score excerpt in Example 11, which depicts
the beginning of SC1, shows a clearly visible structural corre-
spondence to the canonical multiplicative array shown in
Example 10, especially if the first seven notional attacks in each
voice are excluded (i.e., those attacks outside of the shaded
region in Example 10). The only differences apparent in the
graphic score are the gradual accelerandi within each voice, and
the similar gradual narrowing of the pitch interval between
higher voices (reflecting the progressive narrowing of intervals
within the harmonic pitch series). Informally, one could remove
these ‘‘distortions’’ from Example 11, thus yielding the canonical
multiplicative array, by imagining the example’s visual space as
an elastic sheet and independently and non-uniformly stretching
its vertical and horizontal dimensions, respectively, until all of
the voices become evenly spaced and the accelerandi disappear.
Formally, we can apply the independent coordinate mappings
x ! 2x and y ! 2y. These map each point ðx; yÞ onto a point
ð2x; 2yÞ, thus imposing an exponential stretching that eliminates
the original logarithmic variation in each dimension.41 In par-
ticular, this eliminates the logarithmic function from the right-
hand side of Equation (1) so that it becomes xðm;nÞ ¼ mn,
the defining attack-time equation of the canonical multiplicative
array shown in Example 10.

Since the mapping of each coordinate is continuous and
independent of the other, these mappings will change the order
of neither the horizontal nor the vertical coordinates of any pair
of attacks in the array. In particular, observations regarding
attack multiplicities, orders, and coincidences in the canonical
multiplicative array will thus also apply to SC1. The remainder
of this section will treat SC1 as a canonical multiplicative array,
with the understanding that this array is subjected to a gradual
accelerando in the actual music. In other words, x below refers to
the transformed (exponentiated) time-coordinate, not a real
(clock) time-coordinate. In particular, it should be noted that
the voices of the canonical array are not in exact rhythmic canon
but in augmentation canon (since later voices enter at slower
tempi), but that the aforementioned accelerando engenders the
exact canons of the actual music.

As indicated above, in each voice the attacks numbered
m ¼ 1 through m ¼ 7 are notional (non-sounding). Let M
denote the total number of attacks in the forward version of the
duration sequence, including the seven notional ones. Then,
following the compositional specifications enumerated above, if

the total duration of Voice 1’s forward sequence is equated with
the time of the first sounding attack in Voice N ¼ 24, we obtain
xðM ;1Þ ¼ xð8;N Þ or

M ¼ 8N ¼ 8� 24 ¼ 192:

Therefore, the number of attacks in a complete statement of the
forward durational sequence is 192 but, since the first seven are
notional, only 185 actually sound. The total number of sounding
attacks in Voice 1 is 2� 185� 1 ¼ 369, since the forward and
retrograde presentations share one attack.42

As shown in Example 11, the polyrhythms of the opening
appear in the sequence f2:1, 3:2:1, 4:3:2:1, . . . g as successive
voices enter. The first sound in the piece is the entrance of
Voice 1 with eight attacks of A1 at x ¼ 8; 9; 10; . . . ,15. Voice 2
enters at x ¼ 16 with A2 reiterated on every second attack of
Voice 1, followed by Voice 3 at x ¼ 24 with E3 on every
third attack of Voice 1, and so forth. At this point the period
of the total polyrhythm articulated by Voices 1 through 3 is the
Least Common Multiple (LCM) of their voice numbers,
LCMf1, 2, 3g ¼ 6, but with the entry of Voice 4 this period
becomes 12. This exceeds the eight-unit time-delay between
voice entries so that a complete polyrhythmic period is not
presented before a new voice enters. Indeed, LCMf3, 4g ¼
12, so that even the period of the upper two voices alone fails to
complete before a new voice entrance. In order to discern poly-
rhythmic cycles after the entrance of Voice 4, it is necessary to
restrict attention to just a few voices, a task that becomes more
challenging as new voices enter on pitches that are increasingly
close to one another.

As is the case with any multiplicative array, voices heard at-
tacking simultaneously in SC1 are those whose voice numbers
divide the time value x (as discussed in Section 2), but with the
further restriction that these attacks must be sounding rather
than notional. An attack in Voice n at time x is sounding if and
only if n � N ¼ 24 and its attack number m � 8. The imposi-
tion of the last constraint effectively deletes from Example 10(a)
all attacks falling outside of the gray-filled region. In contrast with
the straightforward linear ascent visible in Example 10(a), this
yields a sequence of highest-sounding voices that is irregular,
since the proper divisors of successive integers are not simply
related to one another.

During the first two minutes of the recording, voice glissandi
of the sort described in Section 2 are audible up and down the
low members of the harmonic series, although these become less
apparent as the ear is drawn to higher entering voices and the

40 Here I invoke the summation identity for logarithms, log a þ log b¼ log ab.
41 The mapping of the vertical coordinate corresponds to changing from

a pitch to a frequency scale.

42 The reference score (Tenney [1976]) contains some inaccuracies in its latter
half, particularly with respect to the note counts in each voice. For instance,
the number of notes in the forward-durational series in Voice 1 (i.e., up to
the entrance of Voice 24) is the expected 185, but the number in its ensuing
retrogression differs, and both tallies differ from the total number of notes
in Voice 24. All of these counts should be equal according to the compo-
sitional specifications for the work. Furthermore, in the original player-
piano roll (Tenney [1984]) all of these note counts agree with one another
and with the values computed herein.
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tempi in the lower voices increase.43 Between eighty and 100
seconds into the recording, simultaneous dyads describing attack
parabolas among the upper voices can be heard converging to
unisons or consecutive-voice dyads, the latter close intervals
being particularly salient features of the texture. Both types of
structure are visible in the score excerpt of Example 14, where
gray lines have been added to emphasize them.44 During the
Spectral CANON ’s rapid and complex middle portion, the irreg-
ular sequence of highest pitches engenders fleeting melodic
lines, which are sometimes compound. Typically, a perceived
melodic snippet comprises attacks among high voices that are
close to one another in time and pitch and perceptually segre-
gated from adjacent snippets by a temporal gap. Such gaps
appear at time-values x that have no large divisors less than the
highest sounding voice (e.g., at prime values of x, when only
Voice 1 sounds). Musical interest is greatly enriched by the
ephemeral appearance, coexistence, interaction, and disappear-
ance of these diverse audible structures.

3.2. analysis of sc2

Example 3(b) visibly resembles the divisive array structure of
Example 4(b). Differences include the obvious general ritar-
dando and the familiar progressive narrowing of harmonic-series
intervals between voices, both of which can be eliminated via
suitable coordinate mappings (as in the analysis of SC1). As
indicated above, this analysis treats Barlow’s extended realiza-
tion of Spectral CANON, in which all voices are allowed to finish
their retrogrades, and regards Tenney’s original realization,
wherein all higher voices are truncated when Voice 1 finishes,
as a special case (see Example 13). Finally, recall that, for
analytical convenience, the model includes the seven notional
attacks in each voice at the work’s beginning and also in its
concluding retrogressions.

I will begin by choosing a new time origin located at the final
notional attack in Voice 1 (i.e., at the image under retrogression
of its first notional attack). Since the entrance of Voice n was
delayed by a time-interval of log2 n with respect to Voice 1,
its conclusion will be similarly delayed. Thus, in Voice n, the
(real) time-coordinate of the mth attack, counting backward in
time from the final notional attack in that voice, is45

xðm;nÞ ¼ log2 n� log2 m ¼ � log2
m

n
: ð2Þ

Applying the coordinate mapping x ! 2�x yields

xðm; nÞ ¼ m

n
;

which is the defining equation for the canonical divisive array
shown in Example 4. The role of this mapping perhaps becomes
clearer if it is decomposed into two stages: x ! �x followed by
x ! 2x. Respectively, these are a reflection about a vertical axis
(i.e., a time-reversal) and an exponential ‘‘stretching’’ that
eliminates the logarithm. The application of these two trans-
formations to the horizontal dimension of SC2, plus an inde-
pendent y ! 2y stretching transformation applied to its vertical
dimension, converts it into the canonical divisive array. The
reader may wish to compare Examples 3(b) and 4(b), keeping in
mind that all voices in the former should be extended so that
their retrogressions become complete. The remainder of this
section will treat SC2 as a canonical divisive array, with the
understanding that this is subjected to a gradual ritardando in
the actual music. In other words, as in the analysis of SC1 above,
x will refer to the transformed (exponentiated) time-coordinate,
not a real (clock) time-coordinate.

As is always the case in a divisive array, when Voice 1 attacks,
all other voices attack simultaneously with it. The last sounding
attack in Voice 1 has attack number m ¼ 8, and it is with this
attack that Tenney’s original realization of the Spectral CANON
ends. Earlier simultaneities between voices in SC2 are clearly
audible, but do not involve all twenty-four voices, since some
high ones are still presenting forward forms of the durational
sequence (i.e., they belong to SC1). The extended version of the
piece continues and exhibits simultaneities among those upper
voices still sounding, all of which belong to SC2 since, by that
point in time, they are all presenting retrograde forms of the
duration sequence.

Other structural features of the divisive array are clearly
audible in the texture of the original version as its conclusion
nears, and are visible in the graphic score of Example 15. These
include the relatively large attack-free Farey buffer zones around
integer values of x. The striking harmonic glissandi noted earlier
are associated with flanking curves. The most salient are those
about integer values of x and with indices j ¼ �1, since these
precede or follow the aforementioned buffer zones. My ear usu-
ally follows the descending curve immediately following such
a buffer zone, but due to the pervasive sharing of attacks between
glissandi it is often lured by an ascending curve that is not the last
before the next buffer. Whichever curve my ear follows, others
provide pre- or post-echoes. Although less salient, glissandi
about half-integer (and even third-integer) values of x are none-
theless audible, especially if attention is directed to the high
register where these glissandi are steep and abut their own small
Farey buffer zones. The lowest-voice profile of the array is audi-
ble, especially those attacks involving the lowest five voices. In
intermediate registers the complex chatter of divisive poly-
rhythms is also discernible, like a chaotic rainfall of harmonics
out of which the broader audible figures emerge. As Barlow’s
extended version continues beyond Tenney’s original conclu-
sion, lower voices begin to fall silent as they conclude their

43 They remain visible in the score, however, where they sometimes extend
into high voice numbers to create fan-like patterns (see Example 13:
120–180 seconds).

44 The alignment between curves and attacks is approximate due to changes of
clef in the score and the non-linear mapping of pitch onto musical staves.
Some voice glissando lines are bent for the same reasons.

45 The logarithm identities logðaÞ� logðbÞ¼ logða=bÞ and� logðbÞ¼ logð1=bÞ
are used here.
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example 14. Spectral CANON for CONLON Nancarrow, excerpt from the reference score (Tenney [1976], 90–100 seconds). The
composer marked the entrance of new voices with dashed vertical lines, and simultaneous attacks in adjacent voices with solid vertical lines. In
this figure, additional solid gray lines indicate selected attack parabolas and voice glissandi. Copyright 1974 by Smith Publications, Sharon,

VT. All rights reserved. Used by permission.
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retrogrades. This more clearly exposes the high-register tails of
the glissandi along flanking curves, as shown in Example 13. Not
only do curves of distinct j value become more easily discernable
about integer-valued asymptotes, but so do whole families of
such curves about asymptotes with higher denominators such
as n0¼ 2, 3, and 4. In the closing seconds of the music, there are
even suggestions of the sort of metrical patterns explored in
Section 1.4, although these are rendered ephemeral by the ongo-
ing loss of voices.

3.3. formal design

Over the course of SC1, the music undergoes a gradual
progression from stark simplicity to chaotic complexity via
concurrent increases in tempo, registral compass, number of
sounding voices, polyrhythmic complexity, and harmonic
complexity. In SC2, sensible order is progressively recovered via
a different process. Compared to the complex welter of the
work’s middle portion, the texture seems to simplify as the music
draws to a close. This is a product in part of the decreasing
reiteration rates of the lower voices, which determine the sensed
tempo of the music by demarcating the audible durations that
are subdivided by higher-pitched attacks. Also, the glissandi and
simultaneities emerge as gestalts subsuming many individual
attacks so that an audibly complex texture comprising a counter-
point of many brief, rapid, and unpredictable melodic snippets is
gradually superseded by a texture comprising larger composite
features. The perception of an inexorable process of increasing

complexity and fragmentation gradually yielding to a grand
order subsuming all musical features constitutes the work’s
large-scale formal and dramatic arc.

The progressive emergence of this new order is effected by
the structural ‘‘splicing’’ of SC1 and SC2 that occurs in the
middle of the piece, and which is represented in Example 12.
The smoothness of the transition is promoted by adherence to
a static pitch reservoir, and by the very gradual tempo change
within each voice, which ensures rhythmic continuity when its
retrogression begins. What is perhaps surprising, however, is
that simple intravoice retrogression (coupled, of course, with
a specific set of canonic lags) produces the formally crucial
transition between a multiplicative and a divisive polyrhythmic
array. What takes place is clearly subtler than just a structural
‘‘crossfade’’ between the two array types conducted under the
cover of a rhythmically chaotic texture.

The analysis above has skirted the gradual logarithm-induced
accelerandi and ritardandi of the durational sequences in Spectral
CANON by introducing coordinate mappings that remove those
tempo changes while preserving attack orderings and coinci-
dences. This permitted conclusions about the music’s structure
to be drawn from the earlier analyses of canonical array struc-
tures. It is in the work’s crucial transition from a multiplicative to
a divisive array structure, however, that the logarithms play an
essential role.

Table 1 compares the defining attack-time formulae for the
canonical arrays versus their logarithmic images—Equations (1)
and (2) above—that appear in Spectral CANON.46 The logarith-
mic mapping decomposes the product xðm;nÞ ¼ mn into a sum
of logarithms, and the quotient xðm;nÞ ¼ m=n into a difference
thereof. This is achieved by virtue of the additive and subtractive
logarithmic identities: log ab ¼ log a þ log b and log a=b ¼
log a � log b. Logarithmic functions are unique in thus relating
products and quotients to sums and differences. Accordingly, no
other transformation of the canonical attack-time equations will
decompose them into an intervoice time-delay term dependent
only on voice number (viz. log2n) and an added or subtracted
intravoice attack-time term dependent only on attack number
(viz. log2m).

47 The positive intervoice canonic delay log2 n
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example 15. Graphic score of Spectral CANON for CONLON
Nancarrow near the conclusion of Tenney’s original 1974 version.
Voices above the thick gray line are still part of SC1 (i.e., they have
not yet begun to retrograde, and thus are still increasing in tempo).
Total simultaneities among the lower voices are indicated with thin
lines, as are segments of selected flanking curves about them. The
horizontal axis is linear in real elapsed time, the values of which are
indicated in roman type, while values of x, the transformed time-

variable for SC2, are in italics.

46 Before proceeding, two minor (but potentially confusing) issues regarding
the entries in this table should be addressed. First, as previously indicated,
the logarithmic equations describing SC1 and SC2 assume different time
origins (located at the first and last notional attacks in Voice 1, respectively).
This fact, however, does not affect the internal structures of these arrays.
Second, in the table’s lower-right (SC2) equation, the appearance of the
negative sign preceding log2ðm=nÞ indicates that not only has the attack-
time structure been subjected to a logarithmic mapping relative to the
canonical version above it, but also that the entire resulting array has then
been retrograded in time. In other words, this retrogression is distinct from
the intravoice retrogressions, being a wholesale reflection of the array about
a vertical axis. This simple reversal, of course, does not essentially alter the
character of the divisive array either.

47 For a contrasting example, note that in the canonical arrays themselves the
inter-attack durational sequences are n-dependent (i.e., different in each
voice). It is the logarithmic transformation that turns these arrays into literal
rhythmic canons.
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appears in the attack-time equation for both SC1 and SC2,
while the intravoice sequence log2 m appears as an addend in
the first and a subtrahend (i.e., retrograded) in the second. Thus
it is the specifically logarithmic variation in the intravoice and
intervoice attack-time sequences (inherited from the composer’s
choice of the harmonic pitch series as his rhythmic model) that
induces the work’s pivotal formal transformation from a multi-
plicative to a divisive polyrhythmic array via simple intravoice
retrogression.

3.4. postscript: coordination of pitch and rhythmic
structures

Cowell’s motivating analogy between frequency ratios in the
harmonic series and tempo ratios in divisive polyrhythms may
have proven compositionally fertile, but it is not philosophically
unproblematic. It might be taken to suggest that pitch intervals
and rational polyrhythmic relationships are fundamentally
similar because both are essentially determined by frequency
ratios, differing only in the absolute rates of repetition involved.48

This straightforward physical similarity does not, however,
translate into a correspondingly straightforward psychological
one, because pitches and rhythms are starkly different sorts of
percepts.

Still, the possibility that Cowell’s analogy might have a psy-
chological counterpart should not be dismissed offhandedly.
The uncontroversial fact that no one is likely to confuse a pitch
interval with a polyrhythm does not entail that none of the
products of rhythm and pitch perception bear comparison.
These are multifaceted faculties, as becomes clear whenever the
ear is confronted with multiple discriminable pitches or tempi
whose relationships become objects of perception in addition to
their individual attributes. Thus it is worth briefly considering
what psychological significance frequency and tempo ratios do
possess.

On the one hand, consider an arbitrary polyrhythm com-
prising two voices in a tempo ratio n1:n2. Such a polyrhythm is
periodic in time with a period equal to the Least Common
Multiple of n1 and n2. If the tempo ratio is reduced, then

LCMðn1;n2Þ ¼ n1n2.
49 This product corresponds to the num-

ber of even subdivisions of the total period required in order to
‘‘rationalize’’ the polyrhythm such that all attacks fall on a sub-
division boundary. It thus provides a relative measure of aural
and performance complexity.50 It predicts, for instance, that the
polyrhythms 3:4 and 6:8 have an identical complexity measure of
12—since both reduce to 3:4—but that each is simpler than 3:5,
whose complexity measure is 15.

On the other hand, consider two complex tones with ratio-
nally related fundamental frequencies n1 and n2. Their partials
will coincide in frequency at LCMðn1;n2Þ and multiples thereof.
In post-Helmholtzian theories of consonance, the prevalence of
such coincidences correlates with sensory consonance.51 Thus
(again assuming that n1:n2 is reduced) a low value of
LCMðn1;n2Þ ¼ n1n2 will be associated with a relatively conso-
nant or ‘‘harmonically simple’’ dyad, while a higher value will be
associated with a relatively dissonant or ‘‘harmonically complex’’
dyad.52 This measure predicts, for instance, that the frequency
ratios 3:4 and 6:8 have an identical harmonic complexity of 12
and that each is simpler than 3:5, the complexity of which is 15.

The above complexity measures for polyrhythms and har-
monic intervals are formally identical. While rhythmic and har-
monic complexities remain qualitatively distinct, each correlates
with difficulty in identification, audiolization, and performance.
In this limited sense, Cowell’s analogy between physical frequency
and tempo ratios has an inherent psychological counterpart.

table 1. The defining equations of the canonical multiplicative and divisive arrays, compared with the logarithmic images thereof that model
SC1 and SC2.

 multiplicative (SC1) divisive (SC2) 

canonical:   x(m,n) = mn x(m,n) =
m

n

logarithmic:  x(m,n) = log2 mn = log2 n + log2 m x(m,n) = log2

m

n

= log2 n – log2 m–

48 However, it should be noted that the initial phases of the participating
cycles affect a polyrhythm, but not a pitch interval.

49 For a discussion of this and other properties of Least Common Multiples,
see Shockley (1967).

50 This assumes that the tempo of the subdivisions has a manageable value.
51 See Plomp and Levelt (1965, 555–56, 560); Roederer (1995, 165–68). The

senses of ‘‘consonance’’ and ‘‘dissonance’’ intended here are sensory rather
than functional, and ‘‘harmony’’ denotes only the sensory relationship
among members of an unordered tone-set. It is assumed that comparisons
are made using a fixed timbre and register, since otherwise the amplitude of
participating partials and variation in critical bandwidth will contribute to
the assessment of sensory consonance and dissonance; see Roederer (1995,
168).

52 n1n2 appears as a measure of harmonic complexity for dyads as early as ca.
1563 in the writings of Giovanni Benedetti (Palisca [1961, 108–9]). It also
appears in the psychoacoustical literature (Vos and van Vianen [1985, 180])
and features prominently in Tenney’s theoretical writings on harmony in
the form log2ðn1n2Þ (Tenney [1993, 153]).
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Whatever musical significance this correspondence attains will,
however, depend on the specific use that is made of it.

Tenney’s Spectral CANON provides an example of a struc-
tural analogy between pitch and duration that induces definite
audible correspondences between harmonic and polyrhythmic
complexities. Rhythmically, the opening comprises a collection
of harmonic durational series whose fundamentals also reside in
a harmonic durational series. One might describe the whole as
‘‘harmonic series on a harmonic series’’ for short. Note the
analogy between this temporal structure and the pitch structure
it is unfolding. The discrete piano tones are themselves har-
monic complexes whose partials are arrayed in a harmonic pitch
series, while their fundamental pitches also reside in a harmonic
pitch series. That is, they also constitute ‘‘harmonic series on
a harmonic series,’’ albeit in the domain of pitch rather than
time. More formally, the rhythmic structure of SC1 can be
modeled as a canonical multiplicative array (by means of the
coordinate transformations previously described). By composi-
tional construction, the durational sequence in Voice n has
‘‘fundamental time’’ n, so that its mth attack occurs at time
xðm;nÞ ¼ mn:However, if A1 ¼ 55 Hz is adopted as the unit of
frequency, then the complex tone in Voice n has ‘‘fundamental
frequency’’ n, so that itsmth partial has frequency f ðm; nÞ ¼ mn.
Therefore the pitch structure of SC1 can also be modeled via
a canonical multiplicative array.

In particular, the ratio of the inter-attack duration in voice
number n2 to that in voice number n1 (ignoring the gradual
accelerando) is n2=n1, while the ratio of their respective funda-
mental frequencies is also n2=n1. In other words, in SC1 the
frequency and polyrhythmic ratios between any two given voices
are equal. This correspondence is audible at the opening of SC1,
where polyrhythms of greater or lesser rhythmic complexity can
be discerned involving pitch dyads of respectively greater or
lesser harmonic complexity. Inspection of Example 3(b) reveals
that this correspondence persists in SC2, although it is difficult
to hear amid the more complicated texture. In fact these detailed
correspondences become difficult to follow after the first minute
of music has elapsed. Be that as it may, coordination between
the steady increases in overall harmonic and rhythmic complex-
ity throughout the opening is also a consequence of the struc-
tural pitch-rhythm analogy, and this constitutes an essential
feature of the overall compositional design.

Of course, a stratified polyrhythm does not necessarily
depend on Cowell’s analogy for its musical significance. If such
a texture evokes musical interest, this may instead derive from its
inherent perceptible structures or its role within a particular
musical context. These have been the primary concerns of this
essay. For his part, Tenney indicated that his initial decision to
combine ‘‘horizontalized’’ versions of the harmonic series in
Spectral CANON was motivated not by an interest in pitch-
rhythm analogues per se, but by artistic curiosity coupled with
an attraction to the series as an abstract structure.53

4. appendix: formal analysis of divisive arrays

4.1. equations of flanking curves

If we count from time x ¼ 0, the mth attack in Voice n of the
canonical divisive array occurs at time-value xðm;nÞ ¼ m=n, as
discussed in Section 1 above. Equivalently, a voice whose mth
attack occurs at time x has integer-valued voice number
n ¼ m=x. Thus, for any specified value of m, the curve of the
real-valued function of a real variable yðxÞ ¼ m=x passes through
the mth attack of each voice. The attack number, m, serves as an
index into a family of such flanking curves about a common
vertical asymptote at x ¼ 0. Curves farther from the asymptote
correspond to greater values of m, as can be corroborated by
inspection of Example 4. However, as Example 7 shows, appar-
ently similar families of curves also appear about vertical asymp-
totes located at other rational time-values. In order to index such
curves, we will seek to replace m with an integer-valued index
whose absolute value increases away from such an arbitrary
asymptote. We will proceed under the assumption that such
curves are all vertically scaled and horizontally shifted reciprocal
functions. We will subsequently determine which attacks fall on
each such curve, in order to verify that they accord with our
observations regarding the examples in Section 1.2.

Consider a vertical asymptote located at some arbitrary
rational time-value x0 ¼ m0=n0, where the fraction m0=n0 is in
lowest terms.54 Also consider an attack in Voice n occurring at
time xðm; nÞ ¼ m=n 6¼ x0. It can be confirmed by direct sub-
stitution that the unique real-valued scaled reciprocal function
with asymptote x0 passing through this attack is given by the
equation

yðxÞ ¼ 1

n0

j

x� x0
; ð3Þ

where we have eliminated m by introducing the new non-zero
integer-valued index

j ¼ n0m� m0n: ð4Þ

The flanking curve number, j, serves as an index for a family of
such flanking curves about the common asymptote x ¼ x0, with
curves farther from the asymptote corresponding to greater
absolute values of j and curves to the left of the asymptote
corresponding to negative values of j. Equation (3) satisfies the
differential equation

y 0 ¼ � n0
j
y2;

which shows that, for fixed j and y values, the steepness of
flanking curves is proportional to the reduced asymptote
denominator n0.

53 Tenney (2003).
54 Here m0 ¼ 0 is permitted in order to specify the asymptote at x ¼ 0 as

a special case.
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The only condition imposed on xðm;nÞ was that it not lie on
the asymptote, so any given attack must be located either on that
arbitrarily chosen asymptote or on one of its flanking curves
(associated with some choice of non-zero integer index j).

4.2. attacks on a flanking curve

The set of points falling on a particular flanking curve can be
found by solving the linear Diophantine Equation (4).55 Since
m0=n0 is in lowest terms by assumption, it can be shown that for
each value of j an infinite family of solutions exists (ignoring, of
course, any real-world bounds on the total number of voices),
and that individual solutions are of the form

ðm;nÞ ¼ ðm0 þ m0t; n
0 þ n0tÞ ð5Þ

where t is an integer and ðm0; n0Þ is any single known solution.
A given curve may or may not contain an attack corresponding
to some particular choice ofm, and the same is true for choices of
n. Indeed, Equation (5) shows that, for a given flanking curve
number j, only one out of every m0 values of m will be associated
with a point on the curve, as will only one out of every n0 values
of n.

If desired, a solution set for the Diophantine equation can
also be obtained using the following approach. We say that a is
congruent to b (modulo c) and write a � bðmod cÞ if c divides
a � b. Now simple rearrangements of Equation (4) include
n0m� j ¼ m0n and m0n� ð�jÞ ¼ n0m, so that convenient
alternative forms of Equation (4) are the congruences

n0m � jðmod m0Þ and m0n � �jðmod n0Þ ð6Þ
respectively. The first of these permits straightforward compu-
tation of variousm values for which there are points on a curve of
specified index j, while the second allows a similar computation
for n values. Knowing either the m or the n value of some attack
on curve j, the other value can be computed using Equation (4),
thus furnishing the solution set to the Diophantine equation via
Equation (5). The right-hand member of Equations (6) also
shows that the pattern of solutions for attacking voice numbers
n is periodic in j with period n0; i.e., the set of voices attacking
on each flanking curve, traversing the curves consecutively left-
wards or rightwards, displays a cyclical pattern with that
period.56

4.3. intersections of flanking curves

Consider two flanking curves with indices j1 and j2 about
unequal asymptotes at m1=n1 and m2=n2, respectively, and

intersecting at a time xðm; nÞ ¼ m=n. Substituting into
Equation (3) and solving for ðm; nÞ yields the solution

ðm; nÞ ¼ j1m2 � j2m1

m2n1 � m1n2
;
j1n2 � j2n1
m2n1 � m1n2

� �

:

However, this intersection point only coincides with an
attack in the array if its coordinates are positive integers. A
special case covering the most musically significant circum-
stances is the one in which m1=n1 and m2=n2 are consecutive
fractions in a Farey sequence (of whatever order). A general
property of such consecutive Farey fractions is that m2n1�
m1n2 ¼ 1,57 so in this case the intersection will occur at

ðm; nÞ ¼ ðj1m2 � j2m1; j1n2 � j2n1Þ;
the coordinates of which are integers so that, as long as they are
positive, this intersection corresponds to an attack in the array.
The coordinates will definitely be positive if j1 > 0 and j2 < 0,
implying that every descending curve asymptotic at a Farey
fraction intersects at an attack with every ascending curve
asymptotic at the succeeding Farey fraction, and vice versa.

4.4. boundaries of metrical regions

Example 16 shows a consecutive-voice subset of a divisive
array. Example 16(a) labels selected time-intervals Dx near the
instant at which the triple meter associated with asymptote 1/3
gives way to the duple meter associated with the asymptote 1/2.
Here Dxl and Dxr refer to the time-intervals between adjacent
attacks on flanking curves about these respective asymptotes. As
time increases away from x ¼ 1=3, Dxl increases while Dxr
decreases. Near x ¼ 1=3, attacks sharing a flanking curve about
that asymptote are close together in time and likely to form
temporal gestalt groups, but when Dxl ultimately exceeds Dxr
then attacks sharing a flanking curve about x ¼ 1=2 will become
more likely to group perceptually, marking the transition from
one metrical region to the next.

In order to compute the time of the transition, we solve
Equation (3) for x yielding

xðyÞ ¼ j

n0y
þ x0:

Now consider a single flanking curve with index j, and two
adjacent attacks on it at locations ðx1; y1Þ and ðx2; y2Þ. Then,
using the fact that jy2 � y1j ¼ n0, the difference in time between
these two attacks is

Dxj j ¼ x2 � x1j j ¼ jj j
n0

1

y2
� 1

y1

�

�

�

�

�

�

�

�

¼ jj j
n0

y2 � y1
�

�

�

�

y1y2
¼ jj j

y1y2
� jj j

�y2

ð7Þ
where �y ¼ ðy1 þ y2Þ=2 and where the final approximation is
good whenever the number of voices N 0 	 �y: Referring to

55 An equation axþ by ¼ c where a, b and c are integers is called a linear
Diophantine equation if it is to be solved for integer values of x and y.
Shockley (1967) discusses the solution of such equations.

56 Since attacks falling on the asymptote obey n � 0 ðmod n0Þ, the right-hand
member of Equations (6) still holds if j ¼ 0 is taken to represent the
asymptote; i.e., attacks on the asymptote also participate in the cyclical
pattern of attacking voices. 57 See Hardy and Wright ([1938] 1979, 23).
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Example 16(a) and indexing curves jl to the right of x ¼ 1=3
and jr to the left of x ¼ 1=2, we conclude from Equation (7)
that Dxrj j < Dxlj j when jrj j < jlj j. Thus the metrical transition
occurs roughly an equal number of flanking curves away from
each of the two asymptotes.

In order to compute the time value at which this transition
occurs, we determine the point of intersection between the jth
flanking curve to the right of the old asymptote with the jth
flanking curve to the left of the new asymptote. Expressing the
old and new asymptotes as m1=n1 and m2=n2, respectively, and
using Equation (3), we write

1

n1

j

x� ðm1=n1Þ
¼ 1

n2

ð�jÞ
x� ðm2=n2Þ

:

Solving for x yields

x ¼ m1 þ m2

n1 þ n2
;

which is independent of j and equal to the Farey mediant of the
two asymptotes. Thus the extent of a metrical region roughly
corresponds to the Farey arc about its associated asymptote.

When the denominator of one of the two asymptotes is equal
to the number of sounding voicesN 0, a slightly different analysis
is required, although a similar conclusion is reached. In such
cases, the attack group on each flanking curve about the
asymptote in question will comprise just a single sounding
attack, so that grouping of attacks on those flanking curves plays
no perceptual role. An instance is furnished by Example 16(b)
between the asymptotes x ¼ 1 and x ¼ 1=4, where n2 ¼ N 0 ¼ 4
and only one attack appears on each flanking curve about
x ¼ 1=4. In this instance, the onset of perceived quadruple
meter occurs roughly when the intragroup and intergroup time-
intervals become comparable, so that the four-voice attack cycle
becomes sufficiently rhythmically even. This threshold is less

well defined perceptually than when attack-group formation is
involved, but we may reasonably assume that the transition can-
not begin until the intergroup interval is less than twice the
intragroup interval. Now for N 0 	 �y the intragroup time-
interval between the arpeggiandi attacks is Dxl þ Dxr . (A
notional attack in Voice 19 has been added to Example 16[b]
in order to illustrate this for the case in which Dxl and Dxr are
the intergroup time-intervals between attacks on flanking curves
about x ¼ 1 and x ¼ 1=4 respectively.) Thus the minimal
requirement for metrical transition is that Dxl þ Dxr < 2Dxl .
Using Equation (7), this condition reduces to jjr j < jjl j as before.
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