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Abstract

The goal of this thesis is to address the acoustic and psychological foundations of the music of the
Chinese membrane flute (dizi). The dizi has a membrane covering a hole in the wall of the instrument
between the mouth hole and the uppermost finger-hole. The membrane can enhance upper harmonics of
dizi tones, but it also restricts the tone range. Reductions in the playability of notes in the third octave
were explained by input impedance calculations and measurements. Wrinkles in the membrane are critical
to the production of the characteristic dizi timbre. Theoretical and experimental studies showed that
wrinkling can reduce the membrane¡¦s cubic non-linearity, thereby avoiding the jump phenomenon of a
Duffing oscillator.

Another effect of the membrane is the inhomogeneity of the dizi timbre. As the membrane is driven by
the acoustic pressure in the pipe and radiates sounds, it vibrates more when pressure antinodes lie below
it. According to spectral features, the dizi tone range can be divided into five registers. Three major
spectral features, (1) the first formant at 4¡V6 kHz, (2) the predominance of odd-numbered harmonics,
and (3) high-frequency subharmonics (2n-1)f0/2, were explained by the Duffing oscillator model of the

membrane. This model failed to predict the harmonics above 10 kHz in dizi tones, which might be
attributed to the response of the jet to the high-frequency harmonics generated by the membrane. The
second formant at 10¡V14 kHz suggested a coupling of the first transverse pipe mode.

The timbre of dizi was studied in terms of its stationary spectral features. The global pattern of spectral
envelopes of dizi tones, which is correlated to the auditory attribute ¡§brightness¡¨, was distinguished
from envelope jaggedness due to a predominance of odd-numbered harmonics. In addition to harmonics,
subharmonics also play a role in the perception of dizi tones.

The bright timbre of dizi tones is due to the harmonics accumulating around the two formants, whose
contributions to loudness, stream segregation and breathiness were discussed. The upper notes in the
second octave of the dizi are characterized by a poor spectral content. When a dizi melody ascends from
bright notes to dull notes, the sound source seems to move to a remote place and become more difficult to
localize. These spatial effects in dizi music were related to current theories about sound source
localization.

The dizi tones with weak even-numbered harmonics are characterized by the hollow and/or nasal sound
qualities described by Helmholtz. Nasal voices produced with a water membrane in the nasal cavity have
the spectral feature of a predominance of upper odd-numbered harmonics, by which the membrane
functions as a Duffing oscillator. These upper odd-numbered harmonics can induce multi-pitches. For
instance, when the spectrum of a dizi tone is dominated by 7th, 9th, and 11th harmonics, it could produce
three pitches: f0, 9f0/4, and 9f0/5. This effect, which can enrich the texture of a dizi melody, was

quantitatively studied using a pitch model based on autocorrelation analysis.

The dizi tones in the second octave sometimes contain subharmonics, which induce a rough quality. In
solo music for the large dizi this quality is important for imitating singing. Large dizi tones with
subharmonics often recall melancholic voices. Whereas past psychoacoustic models show difficulties in



roughness calculation for sounds with subharmonics, this thesis provided a new model for the perception
of subharmonics, which takes into account the grouping mechanisms in auditory scene analysis.
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Abstract 

The goal of this thesis is to address the acoustic and psychological foundations of the music of the Chinese 
membrane flute (dizi). The dizi has a membrane covering a hole in the wall of the instrument between the mouth 
hole and the uppermost finger-hole. The membrane can enhance upper harmonics of dizi tones, but it also 
restricts the tone range. Reductions in the playability of notes in the third octave were explained by input 
impedance calculations and measurements. Wrinkles in the membrane are critical to the production of the 
characteristic dizi timbre. Theoretical and experimental studies showed that wrinkling can reduce the 
membrane’s cubic non-linearity, thereby avoiding the jump phenomenon of a Duffing oscillator. 

Another effect of the membrane is the inhomogeneity of the dizi timbre. As the membrane is driven by the 
acoustic pressure in the pipe and radiates sounds, it vibrates more when pressure antinodes lie below it. 
According to spectral features, the dizi tone range can be divided into five registers. Three major spectral features, 
(1) the first formant at 4–6 kHz, (2) the predominance of odd-numbered harmonics, and (3) high-frequency 
subharmonics (2n-1)f0/2, were explained by the Duffing oscillator model of the membrane. This model failed to 
predict the harmonics above 10 kHz in dizi tones, which might be attributed to the response of the jet to the 
high-frequency harmonics generated by the membrane. The second formant at 10–14 kHz suggested a coupling 
of the first transverse pipe mode. 

The timbre of dizi was studied in terms of its stationary spectral features. The global pattern of spectral 
envelopes of dizi tones, which is correlated to the auditory attribute “brightness”, was distinguished from 
envelope jaggedness due to a predominance of odd-numbered harmonics. In addition to harmonics, 
subharmonics also play a role in the perception of dizi tones. 

The bright timbre of dizi tones is due to the harmonics accumulating around the two formants, whose 
contributions to loudness, stream segregation and breathiness were discussed. The upper notes in the second 
octave of the dizi are characterized by a poor spectral content. When a dizi melody ascends from bright notes to 
dull notes, the sound source seems to move to a remote place and become more difficult to localize. These spatial 
effects in dizi music were related to current theories about sound source localization. 

The dizi tones with weak even-numbered harmonics are characterized by the hollow and/or nasal sound 
qualities described by Helmholtz. Nasal voices produced with a water membrane in the nasal cavity have the 
spectral feature of a predominance of upper odd-numbered harmonics, by which the membrane functions as a 
Duffing oscillator. These upper odd-numbered harmonics can induce multi-pitches. For instance, when the 
spectrum of a dizi tone is dominated by 7th, 9th, and 11th harmonics, it could produce three pitches: f0, 9f0/4, and 
9f0/5. This effect, which can enrich the texture of a dizi melody, was quantitatively studied using a pitch model 
based on autocorrelation analysis. 

The dizi tones in the second octave sometimes contain subharmonics, which induce a rough quality. In solo 
music for the large dizi this quality is important for imitating singing. Large dizi tones with subharmonics often 
recall melancholic voices. Whereas past psychoacoustic models show difficulties in roughness calculation for 
sounds with subharmonics, this thesis provided a new model for the perception of subharmonics, which takes 
into account the grouping mechanisms in auditory scene analysis. 

 

Keywords: 
Flue instruments, impedance, Duffing oscillator, timbre, sound source localization, predominance of 
odd-numbered harmonics, pitch, subharmonics, roughness, auditory scene analysis 
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Zusammenfassung 

Die Arbeit behandelt die akustischen und psychologischen Grundlagen der Musik der chinesischen Flöte 
(dizi), die sich durch eine zwischen Anblasloch und erstem Griffloch eingefügte Membran auszeichnet. Die 
Membran verstärkt höhere Obertöne des Dizi-Klangs, obwohl sie den Tonbereich verkleinert. 
Spielbarkeitsreduktionen der Töne in der dritten Oktave können durch Eingangsimpedanz-Berechnungen und 
-Messungen erklärt werden. Die Falten in der Membran sind für die Erzeugung der charakteristischen 
Klangfarbe der Dizi wichtig. Theoretische und experimentelle Untersuchungen bestätigen, dass die Falten die 
kubische Nichtlinearität der Membran reduzieren können. Dadurch wird das Sprungphänomen eines 
Duffing-Oszillators beseitigt. 

Die andere Auswirkung der Membran ist die Ungleichmäßigkeit der Dizi-Klangfarbe. Die Membran, die 
durch den akustischen Druck innerhalb des Rohrs angeregt ist, schwingt stärker in dem Fall, dass Druckbäuche 
unter ihr liegen. Nach den spektralen Merkmalen kann der Dizi-Tonbereich in fünf Register aufgeteilt werden. 
Die drei wichtigsten spektralen Merkmale: (1) der erste Formant, (2) die Dominanz ungeradzahliger Teiltöne, 
und (3) hochfrequente Subharmonische, werden durch das Membranmodell des Duffing-Oszillators erklärt. Das 
Modell kann allerdings nicht die beobachtbaren Teiltöne oberhalb von 10 kHz voraussagen. Diese 
hochfrequenten Anteile entstehen durch Strömungsvorgänge im Anblasloch in Interaktion mit der Membran. 
Der zweite Formant im Frequenzbereich von 10–14 kHz deutet eine Koppelung der ersten transversalen 
Rohr-Mode an. 

Die Dizi-Klangfarbe wird hinsichtlich ihrer stationären spektralen Merkmale untersucht. Die globale 
Eigenschaft spektraler Envelopen von Dizi-Klängen, auf die das auditive Attribut “Helligkeit” zurückgeführt 
werden kann, wird von der durch Dominanz ungeradzahliger Teiltöne verursachten Hüllenzackigkeit 
unterschieden. Neben Harmonischen spielen Subharmonische eine Rolle in der Wahrnehmung des Dizi-Klangs. 

Die helle Klangfarbe der Dizi wird von den auf zwei Formanten konzentrierten Obertönen verursacht. Deren 
Auswirkungen auf Lautheit, Stromtrennung (stream segregation), und “Hauchigkeit” werden untersucht. Die 
höheren Töne in der zweiten Oktave der Dizi zeichnen sich durch einen armen Spektrumgehalt aus. Falls eine 
Dizi-Melodie von hellen Tönen zu dumpfen steigt, klingt die Signalquelle entfernt und schwerer lokalisierbar. 
Diese räumlichen Effekte werden zu vorhandenen Theorien über die Signalquellen-Lokalisierung in Beziehung 
gesetzt. 

Der Dizi-Klang mit schwachen geradzahligen Obertönen ist durch die von Helmholtz beschriebenen hohle 
und/oder nasale Qualitäten charakterisiert. Die nasale Stimme, die mit einer aus Wasser gebildeten Membran in 
der nasalen Höhle produziert wird, hat die spektrale Eigenschaft der Dominanz höherer ungeradzahliger Teiltöne, 
wobei die Membran als Duffing-Oszillator funktioniert. Die höheren ungeradzahligen Teiltöne können 
mehrfache Tonhöhen produzieren. Als Beispiel kann ein von den 7. 9. und 11. Obertönen beherrschter 
Dizi-Klang drei Tonhöhen erzeugen: f0, 9f0/4, und 9f0/5. Der Effekt, der das Gewebe der Dizi-Melodie anreichern 
kann, wird mit einem auf der Autokorrelationsanalyse basierenden Tonhöhenmodell untersucht. 

Manchmal haben die Dizi-Klänge in der zweiten Oktave Subharmonische, die eine rauhe Qualität hervorrufen. 
In der Solomusik der Bass-Dizi ist die Qualität wichtig zur Nachahmung des Gesangs. Die Klänge der Bass-Dizi 
mit Subharmonischen deuten melancholische Stimmungen an. Während frühe Psychoakustikmodelle 
Schwierigkeiten mit der Rauhigkeitsberechnung von Klängen mit Subharmonischen haben, bietet die Arbeit ein 
neues Modell der Wahrnehnung von Subharmonischen, das Grupppierungseffekte in der auditiven 
Szene-Analyse berücksichtigt. 

 

Schlagwörter:  
Labialflöte, Impedanz, Duffing-Oszillator, Klangfarbe, Signalquellen-Lokalisierung, Dominanz  
ungeradzahliger Teiltöne, Tonhöhe, Subharmonische, Rauhigkeit, auditive Szene-Analyse 
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摘要 

 

本論文旨在探討中國笛樂的聲學及心理學基礎。中國笛的管身，在吹孔與指孔之間有一

膜孔，上面貼以笛膜。此笛膜的主要作用在於加強笛音的高頻泛音，不過它也導致了音域的

縮小，這可由輸入阻抗（input impedance）的計算與測量得到證實。笛膜的皺紋對於笛音影

響甚鉅，本研究發現皺紋可以降低笛膜的立方非線性項，防止 Duffing 振子的跳躍現象（jump 
phenomena）發生。 

笛膜的另一個效應是使音色變得不均勻，隨音高而變化。由於笛膜受管內低頻駐波所驅

動，當其位於壓力波之波腹時，會有較大的振動。依頻譜特徵的不同，笛子的音域可以分為

五個音區。笛音的三個主要頻譜特徵：位於 4–6 kHz的第一共振峰（formant）、奇數倍泛音

優勢（predominance of odd-numbered harmonics）、次泛音（subharmonics），皆可由笛膜的

Duffing 振子模型來解釋。此模型無法解釋 10 kHz以上的泛音分布，這些泛音可能跟笛膜產

生的高頻對於噴流（jet）的影響有關。笛音的第二共振峰，則顯示了笛管第一橫向共振（the 
first transverse pipe mode）的作用。 

本論文從笛音的靜態（stationary）頻譜特徵來探討笛子的音色。頻譜的「巨觀形狀」跟

「局部特徵」被分開討論，前者與明亮度（brightness）有關，後者則與相鄰奇、偶數倍泛音

間的強度差有關。除了泛音之外，次泛音對於笛音音色也有重要的影響。 

笛音的明亮度來自於分布於兩個共振峰附近的泛音，本論文探討它們對於音量、聲部分

離（stream segregation）、氣音強度（breathiness）等的影響。由於第二個八度的最高幾個笛

音具有異常微弱的高頻泛音，所以當笛樂旋律上行到此音區時，突兀的音色變化可以帶來音

源「遠離」或「縹緲」的錯覺，這些空間效應（spatial effects）可以由現有的聽音辨位（sound 
source localization）理論來解釋。 

奇數倍泛音比偶數倍泛音來得強的笛音，具有 Helmholtz提出的空洞度（hollowness）與

鼻音（nasality）這兩個音質。本論文指出，當鼻腔中有水膜時，可發出具有高頻奇數倍泛音

優勢的假聲嗓音，此膜具有 Duffing 振子的作用，可產生高頻的奇數倍泛音。這些高頻奇數

倍泛音可以導致多重音高（multi-pitch）的現象，例如當笛音中的第 7、9、11 泛音特別強時，

它可產生三個音高：f0、9f0/4、9f0/5。這個現象可用 autocorrelation的音高模型來做定量分析。 

第二個八度的笛音有時會包含頻率為 (2n-1)f0/2 的次泛音，它們引起了嘈雜度

（roughness），這個音質可讓低音大笛模仿幽咽、悲傷的歌聲。本論文中引用音景分析（auditory 
scene analysis）中匯整機轉（grouping mechanism）的觀念，提出了一個嘈雜度的新模型，以

彌補心理聲學（psychoacoustics）在解釋次泛音聽覺現象上的不足。 
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Chapter 1.  

Introduction 

1.1 Flue instruments 

Flue instruments are musical instruments with similar sounding mechanisms of flutes. They 
include flutes, recorders, organ flue pipes, panpipes, shakuhachis, ocarinas and others. In a flue 
instrument, the sound is produced by mutual interaction between a vibrating jet and acoustic waves in 
a resonator. The jet blown by the musician travels along the mouth of the resonator towards a sharp 
edge. When the instrument produces a tone, the jet oscillates with the period of the tone. At the sharp 
edge, the jet is directed alternately toward the inside and the outside of the resonator. According to a 
potential flow theory and a vortex sound theory, this pulsing injection induces an equivalent pressure 
difference across the mouth (Verge 1994, Dequand 2000, Meissner 2002). The pressure fluctuations 
excite the resonator and sustain periodic acoustic waves. The acoustic field at the mouth in turn drives 
the jet with the frequency corresponding to the excited mode of the resonator. In this feedback loop, 
the radiation and visco-thermal losses are compensated for by the energy supplied by the jet. 

 
 
 
 
 

 
 

 
 
 
 

Figure 1.1: (a) An example of flue instruments: a recorder-like organ pipe. (b) An example of 
membrane-flue instruments: a recorder-like organ pipe with a membrane. 

vibrating jet 

membrane 

(a) 

(b) 
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1.2 Membrane-flue instruments 

Membrane-flue instruments are flue instruments with a membrane covering a hole in the wall of 
their resonators. The membrane is driven by the acoustic pressure in the resonator and radiates sounds 
when it vibrates. A comparison of flue instruments and membrane-flue instruments is illustrated in Fig. 
1.1. For simplicity, a recorder-like organ pipe is chosen. 

In contrast to the abundance of flue instruments in numerous musical cultures, only a few 
membrane-flue instruments exist. The most important of them may be the Chinese flute, the dizi, and 
the Korean flute, the taegum. They have a membrane hole in the wall of the instrument about halfway 
between the mouth hole and the uppermost finger hole. In the Hornbostel and Sachs classification 
system of musical instruments, the dizi and the taegum can be listed as 421.121.12, although this does 
not indicate the presence of the membrane. Membrane-flue instruments possess attributes of both 
aerophones and membranophones. 

1.3 Goal and Framework 

As the study of a musical instrument, this thesis is closely related to the tradition of organology 
(Instrumentenkunde in German), which was deeply rooted in historical musicology and then involved 
in comparative musicology after taking into account non-European musical instruments. 

Organology in comparative musicology was, in essence, a descriptive science. The appearance, 
evolution, performance practice and musical aesthetics of an exotic musical instrument may be 
described and compared to related Western instruments. Its construction dimensions, intonation or 
sound spectra may be measured. Nevertheless, linkages between its physical properties and 
performance practice, between its timbre and musical aesthetics are often missing. Solid scientific 
bases of organology demand the methodology of systematical musicology. 

The goal of this thesis is to address the acoustic and psychological foundations of dizi music. The 
framework of this thesis is illustrated in Fig. 1.2. Chapter 2 follows the methodology of organology by 
providing a general description of the dizi. Chapter 3 takes a close look at the role of the membrane in 
dizi music, posing the questions which I try to answer in the following chapters. 

The physics and perception of dizi tones will be analyzed within the framework of systematical 
musicology. Chapters 4 and 5 deal with the physics of the dizi related to the performance practice. 
Chapter 6 aims to explain the spectra of dizi tones by modeling the membrane as a Duffing oscillator. 
It thus serves as transition in this thesis from the physics to the timbre perception of dizi tones. 
Chapters 7–9 aim to explore the auditory attributes and effects correlated to the spectral features of dizi 
tones, highlighting the role of the dizi timbre in the perception of dizi music. 
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Figure 1.2: Framework of this thesis. 

1.4 Methodology and Scope 

As a consequence of the multidisciplainary nature of systematical musicology, the present study 
on the dizi is divided into two parts dealing with the physics (chapters 4–6) and perception (chapters 
7–9) of dizi tones. In addition to the essential methods of acoustics and psychoacoustics I also intend in 
this thesis to connect with recent progress made in aeroacoustics, psychological acoustics and 
physiological acoustics. 

The mechanics involved in dizi sound production depends on the vibration amplitude of its 
membrane. In small-amplitude vibrations of the membrane, the resonator of the dizi behaves linearly. 
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Chapter 4 concentrates on impedance measurements and calculations of the dizi resonator, which is a 
coupled system consisting of the pipe and the membrane. In medium-amplitude vibrations of the 
membrane, the resonator of the dizi behaves non-linearly. The membrane’s non-linearity of lower 
orders is explored in chapter 5 by means of a harmonic balance technique. In a typical playing range, 
there are two non-linear mechanisms in the dizi: the aerodynamics at the mouth hole and the 
membrane in large-amplitude vibrations. In chapter 6 the membrane’s vibration is simulated by a 
numerical method. Theories of aeroacoustics are taken into consideration in discussing the sounding 
mechanism and harmonic generation of the dizi. 

While these methods mentioned above are widely available for the physics of musical 
instruments, the methodology in musical perception is relatively diverse and often a hotly debated 
issue. In this thesis, a central aspect for exploring the perception of dizi tones is the 
multidimensionality of musical timbre. 

Timbre is an auditory attribute considered as a perceptual parameter of sound that is complex and 
multidimensional. This multidimensionality makes it impossible to measure timbre on a single 
continuum. Multidimensional scaling (MDS) has been a fruitful tool for studying the perceptual 
relationships among musical sounds and for analyzing the underlying attributes used by subjects when 
making (dis)similarity judgments on pairs of musical sounds. The object of MDS is to reveal 
relationships among a set of musical sounds by representing them in a low-dimensional Euclidean 
space so that the distances among the musical sounds reflect their relative dissimilarities. In MDS 
research, two common dimensions have been quantified psychophysically in terms of (1) transient 
attack and (2) spectral centroid (Grey 1977, Iverson and Krumhamsl 1993, Krimphoff et al. 1994, 
McAdam et al. 1995). Other dimensions such as spectral irregularity and spectral flux are shown to be 
less robust (McAdam and Winsberg 2000). 

The present thesis concentrates on the static spectral features of dizi tones and does not take into 
account its temporal envelop, which is believed to play a crucial role in timbre recognition. Despite 
this scope restriction, the spectral timbre of the dizi itself is multidimensional and complex. Because 
the spectral distribution of dizi tones can range from 200 Hz to 22 kHz, even brightness itself may be 
multidimensional and should not be represented by the spectral centroid. In exploring dizi tones, I find 
the importance of some spectral features in musical perception, such as the average amplitude 
difference between adjacent odd/even-numbered harmonics (auditory hollowness or nasality) and 
distribution of subharmonics at high frequencies (auditory roughness). From this viewpoint, this thesis 
seems to expand the method of MDS by proposing new dimensions in the timbre space. However, it is 
not the main purpose of this thesis to refine MDS. It should be noted that I refer to the aspect of 
timbre’s multidimensionality, but no experiments of (dis)similarity judgments are performed for 
constructing a dizi timbre space. The reason for this methodological adaptation lies in substantial 
differences between Western music and Chinese music. 

Whereas MDS was developed to represent different timbres characteristic of different Western 
musical instruments in a timbre space, the present thesis accounts for different timbres of the same 
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instrument. The spectra of dizi tones vary a lot through the entire tone range. Inhomogeneity of the dizi 
timbre is well known by musicians. It reflects a general aesthetic tendency in traditional Chinese 
music that a skillful musician should produce various timbres with a solo instrument. In comparison to 
Western music, the score of traditional Chinese solo music is always fairly simple. During a 
performance, the listener concentrates on nuances in timbre. In Qin music, the most important musical 
genre of Chinese literati, an intense interest of timbre was embodied in a number of techniques dealing 
with various ways to pluck a string. Similarly, the varying timbre of dizi tones is well appreciated by 
the traditional music audience. As the conception of musical timbre in Chinese music differs 
substantially from that in Western music, the comparative approach can throw new light on musical 
timbre research. Specifically, the highly inconsistent spectral timbre of the dizi demands a rethinking 
of the constancy of musical timbre for instrument identification. 

Inhomogeneity of the dizi timbre leads to spatial effects in dizi music, which can be related to 
current theories about sound source localization. The upper notes in the second octave of the dizi are 
characterized by a poor spectral content. When a dizi melody ascends from bright notes to dull notes, 
the sound source seems to move to a remote place and become more difficult to localize (Lin 1997). 
These spatial effects will be explained in terms of a theory of auditory distance perception and 
monaural cues of sound localization. 

Another interesting phenomenon in dizi music is the rich ‘texture’ of a single dizi tone. Due to 
some spectral features, dizi tones sometimes evoke multi-streams in auditory scene; the dizi melody 
sounds rich in texture. This auditory illusion will be related to the notion of auditory scene analysis 
(Bregman 1990), which breaks a sound mixture into elements and unifies proximate elements into 
discrete objects, or ‘streams’. Grouping mechanisms in auditory scene analysis are considered to be 
governed by some ‘grouping rules’. The rich texture of a single dizi tone reflects a limitation of the 
grouping mechanism based on pitch perception. To demonstrate this effect, I follow the current 
models for computational auditory scene analysis to use autocorrelation analysis for pitch extraction 
and pitch strength estimation (e.g., Brown and Cooke 1995, Ellis 1996). 

1.5 Thesis outline 

The thesis begins with two introductory chapters, which are followed by the main body (chapters 
4–9) dealing with the physics and perception of dizi tones. 

In chapter 2, a general description of the dizi is provided. It includes the history, construction, 
performance techniques, repertoire and styles of the instrument. New trends of dizi music in 20th 
century China are also mentioned. 

In chapter 3, the empirical rules of membrane-sealing and the acoustic effects of the dizi 
membrane are described. This chapter emphasizes the characteristics of a membrane-flute, triggering 
the following scientific studies. 
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In the first part of the main body (chapters 4–6), the physics of the dizi is studied. 
Chapter 4 studies the linear behavior of the membrane in small-amplitude vibrations. Input 

impedance measurements and calculations of the dizi resonator are performed. 
Chapter 5 explores the physics of wrinkles in the membrane and its non-linear behavior in 

medium-amplitude vibrations. 
In chapter 6, the membrane in large-amplitude vibrations is modeled as a Duffing oscillator 

driven by the low-frequency acoustic waves in the pipe. This model aims to explain the spectral 
features of dizi tones in various registers. 

 
In the second part of the main body (chapters 7–9), the perception of dizi tones is considered, 

concentrating on their steady spectral features. Chapters 7 and 8 deal with the perception of harmonics 
with frequencies nf0 (where f0 is the perceived pitch, n = 1, 2, 3...), while chapter 9 deals with the 
perception of subharmonics with frequencies (2n-1)f0/2. 

Chapter 7 studies the perception of global spectral envelop of dizi tones. It is represented by 
brightness and related to the two formants of the dizi. 

Chapter 8 explores the perception of spectral envelope jaggedness of dizi tones, which is due to 
the predominance of odd-numbered harmonics. 

In chapter 9, an auditory model for roughness induced by subharmonics is provided. Dizi tones 
and human voices containing subharmonics are compared. 
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Chapter 2.  

Chinese flutes and their music 

Abstract 

The dizi is a Chinese transverse flute made from bamboo. It differs from the Western flute in having a 
thin membrane covering a hole in the wall of the instrument about halfway between the mouth hole 
and the first finger-hole. Chinese membrane-less flutes were first documented as the chi in the Zhou 
dynasty (1122–221 BC). The invention of membrane-sealing dates back to the Tang dynasty 
(618–907 AC), but the popularization of the Chinese membrane flute was accomplished by the rise of 
Kunqu opera in the mid-16th century. 
The qudi and bangdi are two traditional types of the dizi. The qudi is the “southern” type, associated 
with the lyrical style influenced by Kunqu opera. The bangdi, smaller than the qudi, prevails in 
northern China with lively melodies, which require a more animated performance style with tongue 
techniques and glissandos. 
There is no absolute standard finger-hole placement for the dizi and its intonation can be affected by 
the membrane’s properties. Instead of any fixed temperament, the key-mode system was used in 
traditional dizi music. In the 20th century, this system was replaced by Western diatonic tuning 
system. 
Several new dizi were invented in the 20th century. The xindi, a membrane-less bamboo flute, was 
designed to play a complete chromatic scale in Western music. The dizi with two membranes was 
designed to reduce the inhomogeneity of the dizi timbre. The invention of the large dizi has opened a 
new page of Chinese music, as this instrument matches the traditional Chinese literati culture 
particularly well. Of the new performance techniques developed in the past decades, singing into the 
dizi and playing the dizi with vibrating lips are relevant to the membrane. 

2.1 Introduction 

The purpose of this chapter is to provide a brief introduction to the Chinese flute. Following the 
methodology of organology, this chapter covers a number of topics such as terminology, history, 
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construction, performance techniques, repertory and style. As the central issue of the thesis concerns 
the acoustic effects of the membrane of the dizi, I will not go into details about every musical issue. 
Discussions on temperaments, performance techniques, music notation and the social/political 
background of Chinese flute music can be found in other papers (e.g., Zhao 1985, Rao 1987, Wang 
1989, Thrasher 1978, Lau 1995). This chapter emphasizes the role of the membrane when dealing with 
these issues in organology. 

This chapter begins with the terminology of the Chinese flute in section 2.2. Section 2.3 gives a 
brief survey of the history of the Chinese flute, which is divided into the era of the membrane-less flute 
and the era of the membrane flute. The construction of the traditional Chinese flute is described in 
section 2.4. Traditional Chinese flute music refers here to the era before the 20th century. 

Temperament has been an overarching theme of Chinese flute research. Zhao (1985) analyzed 
the influences of temperature on the Chinese flute intonation. Rao (1987) compared the temperament 
of the Chinese flute and the ancient bells ensemble in the Zenghou Yi treasures (5th century BC). 
Although some interesting results have been obtained, I argue in the light of the membrane’s acoustic 
effects that there is no standard temperament in traditional Chinese flute music. Section 2.5 shows the 
fingerings of the dizi and introduces the notion of the key-mode system, which may be more essential 
than the notion of fixed temperaments in traditional dizi music. 

A list of modern music notation for the Chinese flute can be found in most textbooks for the dizi. 
However, in traditional music, written notation only offered a skeletal form of the melody for all 
instruments. The art of embellishments rooted in oral traditions has become an integral aspect of 
techniques. In section 2.6 the repertory and embellishments of the southern and northern styles of dizi 
music are described. New trends of dizi music in the 20th century are briefly addressed in section 2.7, 
which discusses instrument evolutions and new performance techniques relevant to the membrane’s 
acoustic effects. 

2.2 Terminology 

The Chinese flute is often called dizi or hengdi. The term di is a generic term for all Chinese 
flutes. In the present thesis, the modern name, dizi, is used to refer to the Chinese membrane flute. The 
hengdi, literally ‘transverse flute’, is an old name dating back to the seventh century. It can refer to 
flutes with or without a membrane. Besides dizi and hengdi, the zhudi (literally ‘bamboo flute’) and 
the zhong-guo-di (literally ‘Chinese flute’) are also popular names for the Chinese flute. 

The flutes accompanying various Chinese operas have different names. The qudi (literally ‘song 
flute’) are specifically associated with Kunqu opera and Luantan opera originating from 
central-eastern China. The qudi accompanying the Kunqu opera is called kundi. On the other hand, the 
bangdi is associated with Bangzi opera originating from northern China. It is also known as duandi 
(literally ‘short flute’) or gaodi (literally ‘high flute’), as it is shorter than the qudi and its tones are 
higher. 
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The Chinese flutes can be named for their material, such as the yudi (literally ‘jade flute’), tiedi  
(literally ‘iron flute’) and zhudi (literally ‘bamboo flute’). The latter’s English translation, the Chinese 
bamboo flute, appears frequently in musical literature. However, this name reflects the prevailing 
misconception that the characteristic timbre of the dizi is due to its material. For this reason the name 
‘bamboo flute’ is not used in the present thesis. Others, knowing the crucial role of the membrane for 
the dizi timbre, sometimes call the instrument modi, literally ‘membrane flute’. This name clearly 
indicates that the dizi is a membrane-flue instrument, and therefore the ‘Chinese membrane flute’ has 
been chosen for this thesis. An alternative name for the membrane flute is the “reeded flute”, because 
the membrane is peeled from the inside of a reed. However, this name can easily be confused with reed 
instruments, especially the Chinese transverse reed instrument: the bawu. 

In historical literature, the terminology of wind instruments is quite confusing. Names such as 
guan (literally ‘pipe’), chui (literally ‘blow’) are often used for both flutes and reed instruments. The 
term di itself may refer to either vertical flutes or transverse flutes. Hence, historical literature should 
be viewed with caution. 

2.3 History 

2.3.1 Membrane-less flute 

Flute type instruments are believed to be among the oldest melodic instruments made by humans. 
A flutelike fragment found in Slovenia is ascribed to the final phase of the middle Paleolithic era 
(50,000 to 35,000 years ago) (Kunquej and Turk 2000). The oldest Chinese flute is a bone flute from 
8,000 years ago found in Wuyang County of Henan Province. It has seven holes and is still playable 
(Wang 1989). Another important archeological find, the Hemudu discovery, contained more than 
forty bone flutes from 7,000 years ago. Most of them have less than three holes, but one has six 
finger-holes. This bone flute closely resembles the dizi of today (Zhao 1985). Although these recent 
archeological finds have extended the history of the dizi back into the Neolithic era, it remains unclear 
whether these bone flutes have influenced the development of later Chinese flutes. 

The first documented Chinese flute is the chi in the Zhou dynasty (1122–221 BC). Its mouth hole 
is located in the side of the tube either near one end or directly in the middle. In the former case, the chi 
has a similar construction to the di. In the latter case, the tube is closed at both ends (Chuang 1965). 
They were found in the Zenghou Yi treasures (5th century BC), which also contained two panpipes 
(Liu 1987). The chi is played transversely but differs from the di in construction, the chi being shorter 
and having a larger internal diameter. While the finger-holes and the mouth hole of the di lie on the 
same plane, the finger-holes of the chi lie on a surface 90 degrees from the mouth hole. Therefore, the 
chi is held with both hands on the outside of it. As the chi was employed in Zhou court music, it is very 
likely that this instrument in some way influenced the development of the di. 

During the Han dynasty (206 BC–220 AC), the hengchui (literally ‘transverse blow’) was 
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imported from Central Asia. From the sixth century, transverse flutes were more commonly know as 
hengdi. Pictorial evidence and lyric resources show that this instrument was quite popular and one of 
the most important military instruments. Two Han hengdi found in the Mawangdui discovery of 
Hunan have six finger-holes (Wang 1989). Thrasher (1978) suggested that the Han hengdi may have 
been a flute of Indian provenance or influence. However, more research is needed before this assertion 
can be supported. The present-day Indian bamboo flute closely resembles the Chinese bamboo flute, 
but the former has no membrane. 

The hengdi, together with the bili (double-reed instrument, resembling the present-day guan) and 
the sheng (mouth-organ), was employed in Tang (618–907 AC) court entertainment ensembles. Of the 
many instruments sent to Japan during this period, four hengdi are preserved at the Shosoin Repository 
(Hayashi 1967). These flutes have seven finger-holes and no membrane-hole. The present-day 
Japanese bamboo flute, ryuteki, is still used in the Gagaku orchestra. As the Japanese flute imported 
from China in the Tang dynasty has no membrane, it is unlikely that the Chinese membrane flute 
emerged or became popular as early as the Tang dynasty. 

2.3.2 Membrane flute 

The Chinese membrane flute was first mentioned in the early twelfth century treatise yueshu. The 
author, Chen yang, attributed the invention of membrane-sealing to a musician Liu Xi （劉係）in the 

Tang dynasty. The first Chinese membrane flute was named qixing-guan, literally ‘seven-stars tube’. 
It became a popular instrument in the Song dynasty (960–1279 AC), while the membrane-less flutes 
continued to be mentioned under several different names (Thrasher 1978). It is interesting to note that 
a vertical membrane flute, xiaoguan, was also mentioned in yueshu. But this instrument was not 
documented in other literature and has never been discovered. By the following Ming dynasty 
(1368–1662 AC) the membrane-less flute had all but been replaced by the membrane flute. Its basic 
construction remains unchanged up to now. 

It is noteworthy that the popularization of the membrane flute in the Ming dynasty was a 
consequence of the rise of Kunqu opera. Because the membrane brings a bright timbre to the flute, it 
can be clearly heard by all performers and the audience, even when the singing and the percussion 
instruments are fairly loud. The membrane noticeably reinforces the leading role of the dizi on Kunqu 
opera and the membrane-less flutes rapidly faded away. Furthermore, the rise of Kunqu opera in the 
mid-16th century highlighted the coming of the membrane flute era in Chinese music history, as many 
performance techniques and the musical style of the dizi were developed to accompany the singing in 
Kunqu opera. The lyric and embellished singing in Kunqu opera has deeply influenced the southern 
style of the dizi. 

Before moving from this historical introduction to the Chinese membrane flute, it is important to 
mention another membrane flute in a musical tradition neighboring China. The Korean membrane 
flute, the taegum, is believed to be one of the three major flutes of the Unified Shilla period (668 – 935 
AC). It is larger than the qudi and differs from Chinese membrane flutes in having a proportionally 
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larger membrane hole and mouth hole. As the taegum seems to predate the emergence of the Chinese 
membrane flute (Howard 1988), there is a remote possibility that the taegum was imported from 
China. 

2.4 Construction 

The dizi is a transverse flute made from bamboo. According to its size, three basic types of the 
dizi are usually differentiated. With increasing length, they are the bangdi, qudi and large dizi. The 
bangdi and the qudi are traditional instruments, while the large dizi was invented in the recent decades.  

The qudi is the prevailing “southern” type, employed in musical and theatrical genres of 
central-eastern China. The qudi is externally about 40 cm or more in length. Its usual range is two 
octaves plus two tones – for instance, G4 to A6 for the qudi in C. The bangdi is the prevailing 
“northern” type, employed in musical genres of northern China. Both the qudi and the bangdi have six 
finger-holes, while the large dizi usually has seven finger-holes. These three types of dizi are compared 
in Fig. 2.1. Because the seventh finger-hole of the large dizi is covered by the small finger of the right 
hand, this hole is located a little inward. 

The dizi has two or four closely-spaced end-holes near the foot of the instrument. These 
end-holes are never covered and define the effective length of the lumping air column for the lowest 
tone. They are sometimes used to attach one end of a cord. 

The dizi has a thin membrane covering a hole in the wall of the instrument about halfway 
between the mouth hole and the first finger-hole. The membrane of the dizi is made of a square of thin 
skin peeled from the inner surface of a section of reed or bamboo. It is larger than the hole and attached 
with water-soluble glue. 

 

 
 

 

  

 

 

Figure 2.1: (a) Photos of three types of the dizi: large dizi in G, qudi in C and bangdi in F. In the 
modern nomenclature, a dizi is named after the note played with the fingering ●●●○○○  or  ●●●○

○○○. (b) Construction of the dizi. 
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Like the Western flute, the dizi has a cork sealing one end of the tube. The tube of the instrument 
extends about 20 cm beyond the cork, with no obvious acoustical effects, although the weight of this 
extension has an effect in the player's hands that is similar to that of the heavy crown plug in the head 
of a Western flute. 

The dizi is normally wrapped in numerous windings of silk thread or nylon line. This helps to 
prevent the bamboo from splitting. The dizi is often tipped on both ends with bone fittings to protect 
the bamboo tube. 

2.5 Fingering, temperament and key-mode 

Table 2.1 shows the fingering table of the dizi given in a modern textbook for dizi players. Next 
to the absolute tone names, it also shows the solfege tone names for all fingerings  in the most popular 
key, Xiaogong (●●●○○○  =  do = 1). For traditional music, a sequential finger pattern of the first 
octave of the dizi tone range is basic. The second octave is fingered exactly like the first except for the 
only cross-fingering ○●●○○○. In the second octave it is replaced by another cross-fingering ○●○●

○●. However, this tone is rarely used. 
In traditional dizi music, there is no absolute standard in temperament or finger-hole placement, 

and the intervals between adjacent notes vary slightly from flute to flute. Thrasher (1978) proposed an 
ascending interval structure of the first octave of the dizi: 3/4 tone, 3/4 tone, 3/4 tone, whole tone, 3/4 
tone and whole tone. He deduced this structure from measurements on four dizi. Three of them are 
traditional instruments and one is a modernized, tempered instrument. The original data of Thrasher 
(1978) is plotted in Fig. 2.2. It can be observed that the modernized dizi (marked with ‘＊’) has been 
constructed closer to diatonic temperament. The ascending interval structure of the modernized dizi is: 
whole tone, whole tone, semi-tone, whole tone, whole tone, semi-tone and whole tone. On the other 
hand, the interval structures of the other three dizi are more consistent with Thrasher’s proposition, 
namely, 150, 150, 150, 200, 150 and 200 cents. 
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Xiaogong 5 6  7 1 2 3 4  5 6  7 1 2 3 4  5 6 7 1 

Note name G4 A4 Bb4 B4 C5 D5 E5 F5 F#5 G5 A5 Bb5 B5 C6 D6 E6 F6 F#6 G6 A6 B6 C7 

 
Table 2.1: Fingerings of the qudi in C. 
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Figure 2.2: Interval structures of the first octave measured on four dizi according to the data of 
Thrasher (1978). One of these dizi is modernized (‘＊’) and the other three are traditional. The dizi in 
Thrasher’s collection (‘×’) and the dizi in the Crosby Brown Collection (‘◇’), (Metropolitan Museum 
of Art, New York), collected on the China prior to 1894, were measured by Thrasher. The other dizi  
(‘○’), belonging to Chuang Penli, was measured by the owner (Chuang 1968). 

 

Thrasher’s proposition of the dizi temperature did not take into consideration that the pitch of 
tones produced by wind instruments is not completely determined by fingerings and finger-hole 
placement. The player’s embouchure can also affect the pitch for more than 50 cent. In the case of the 
dizi, the intonation is further complicated by the membrane. A slack membrane makes most dizi notes 
lower, but a few dizi notes remain unaffected. Pitch shifts of dizi tones due to the membrane will be 
discussed in chapter 4.  It should be noted here that pitch shifts depends on the membrane’s tension 
and thickness. Furthermore, pitch shifts of dizi tones are so inhomogeneous that the first and second 
bore resonances for the same fingering can deviate from an octave by 50 cents or more (see Fig. 4.17). 

Regarding the acoustic effects of the membrane, there is no fixed relation between the fingerings 
and the frequency of dizi tones. A good dizi player should modify the interval structure for various 
pieces. The flexibility of intonation due to the player’s embouchure is intrinsic to wind instruments. 
Chinese musicians took advantage of this to develop the key-mode system that prevails in folk music. 

The key-mode system in the dizi, the suona (a double-reed instrument) and other folk wind 
instruments, is a result of playing a movable solfege with the same instrument and using sequential 
fingerings. In the other words, it is a compromise to play various keys on a simple (key-less) 
instrument with sequential fingerings. Despite a number of theories on temperament and tuning 
systems developed in ancient China, there has been a great gap between scientific research and 
practice in folk music, where the limitations of instruments and the desire for a straightforward 
performance are more important to theoretical considerations. 

Table 2.2 illustrates seven keys (‘diao’ in Chinese) in traditional dizi music. It can be seen that 
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each fingering can function as ‘do’ in moveable solfege. Therefore, the intervals between successive 
notes, such as the two tones corresponding to the fingerings ●●●●●● and ●●●●●○, cannot be 
invariant for playing movable solfeges. Traditional dizi players should change their embouchure to 
modify the pitch of dizi tones according to the key of the piece. However, it is impossible to maintain a 
fixed temperament for all seven keys. Consequently, each key has a quite distinct modal flavor, as 
correctly indicated by Thrasher (1978). 

 

 
 

乙字調 

 

正宮調 

 

六字調 

 

凡字調 

 

小工調 

Xiaogong 

尺字調 

 

上字調 

 

●●●●●● 上; do 尺; re 工; mi 凡; fa 合; sol 四; la 乙; ti 

●●●●●○ 尺; re 工; mi 凡; fa 合; sol 四; la 乙; ti 上; do 

●●●●○○ 工; mi 凡; fa 合; sol 四; la 乙; ti 上; do 尺; re 

●●●○○○ 凡; fa 合; sol 四; la 乙; ti 上; do 尺; re 工; mi 

●●○○○○ 合; sol 四; la 乙; ti 上; do 尺; re 工; mi 凡; fa 

●○○○○○ 四; la 乙; ti 上; do 尺; re 工; mi 凡; fa 六; sol 

○●●○○○ 乙; ti 上; do 尺; re 工; mi 凡; fa 六; sol 五; la 

 

Table 2.2: Fingerings and key-mode system of the traditional dizi. The Chinese characters are the 
names of the key-mode. Both the traditional notation of Chinese music and the equivalent solfege are 
listed. 

 

The complicated issue of dizi intonation is beyond the scope of the present thesis. It should be 
noted that the key-mode is still used in folk suona music such as Hakka Bayin and Beiguan in Taiwan, 
whereas this tradition has faded away in dizi music. Nowadays, dizi players use a dozen dizi with 
various sizes for playing twelve keys. The modernized dizi is tempered according to the most popular 
key, Xiaogong (shadowed area in Table 2.2) with a diatonic scale not unlike the scale used in Western 
music. 

2.6 Southern and northern styles 

2.6.1 Traditional repertory 

It is relatively straightforward to differentiate the two mainstream types of Chinese flute music: 
southern style and northern style, which are played by different instruments. The qudi is the prevailing 
“southern” type, employed in musical and theatrical genres of central-eastern China. The bangdi is the 

fingerings 

key-mode 

solfege 
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prevailing “northern” type, employed in genres of northern China. The qudi is normally associated 
with slow and lyrical melodies originating from the singing style of Kunqu opera. On the contrary, 
bangdi melodies are generally lively, requiring a more animated performance style with tongue 
techniques and glissandos. 

The dizi is widely used in many regional musical genres. During the Ming dynasty (1368 – 1644 
AC) the qudi became the leading instrument in Kunqu opera. Nowadays, the traditional employment 
of the qudi includes Kunqu opera, Jiangnan sizhu (literally ‘silk and bamboo ensemble in the lower 
Yangtze River region’), Luantan opera (originated from Shaoxing province), and Taoist rituals. The 
traditional employment of the bangdi includes Bangzi opera, Errentai (an operatic genre popular in 
Shanxi and Shannxi provinces, and Inner Mongolia), and Chaozhou Xianshi (an instrumental 
ensemble from the Chaozhou area in Guangdong province). Both the qudi and bangdi are used in Gua 
opera, Hakka opera, puppet theatre, Beiguan and Bayin (instrumental ensembles) in Taiwan. 

2.6.2 Performance techniques and embellishments 

The dizi tone is produced in a similar way to the Western transverse flute. It is done by placing 
the lower lip just below the lower edge of the mouth hole and blowing a small stream of air across the 
mouth hole. Because the dizi mouth hole is smaller than that of the Boehm flute, the lower lip should 
not partially cover the mouth hole as in playing the Boehm flute, and the embouchure should be more 
concentrated. 

There is a certain degree of improvisation in performing dizi music. Musicians systematically 
add embellishments to the ‘skeletal’ form of the written melody. Traditional dizi music genres have 
developed characteristic embellishments, which are idiomatic to their musical language and have 
become an integral aspect of dizi techniques. These embellishments, which vary across the southern 
and the northern styles, are not written in traditional notation of dizi music but rooted in oral traditions. 

The most important embellishments used in the southern style dizi music are appoggiatura, trill, 
repeated-note and end-note decorations. They are closely related to the singing style in Kunqu opera. 

The single appoggiatura preceding the main note can be either immediate above or below the 
main note [Ex.2.1(a)]. The multiple appoggiatura preceding the main note consists of a short main 
note and a note immediate above it [Ex.2.1(b)]. The trill is formed by the main note and the note 
immediate above it. 

 

 

Example 2.1: Embellishments used in the Kunqu tune ‘Shanpoyang’（山坡羊）. 

(b)              (b)   (d)      (a)                       (c)   (e)    (b)            (b)               (a) 
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In the repeated-note decoration the next higher or lower note can be used to re-articulate the same 
pitch [Ex.2.1(c)]. The end-note decoration is done by lifting of dropping (two or three fingers) together 
with a slight surge of breath. This effect can result in either a discernible end pitch [Ex. 2.1(d)] or 
indiscernible [Ex. 2.2(e)]. 

The most important embellishments used in the northern style dizi music are single/ 
double/multiple tonguing, flutter tonguing, glissando, and accented glissando. While the tongue is 
seldom used in the southern style dizi music, the single, double and multiple tonguing are basic in the 
northern style dizi music. The flutter tonguing is a method of tone production which consists in rolling 
the tongue. The glissando is made possible by the exposed finger-holes, which the fingers can 
gradually cover or uncover to change the pitch continuously. Very often musicians combine the 
glissando with the flutter tonguing to producing a ‘fluttered glissando’. The accented glissando is done 
by closing all holes with fingers one after another from the sixth finger-hole to the first finger-hole 
rapidly and strongly, while a short and fast stream is blown into the mouth hole. Thereby the accent of 
the first note of the glissando is clearly heard (Wang 1989). 

2.7 New trends in 20th century China 

2.7.1 Repertory 

Nowadays, the dizi repertory dominating concerts in China, Hongkong and Taiwan is different 
from traditional repertories. It consists almost exclusively of arrangements of existing pieces and 
original compositions written in recent decades. The majority of these new concerto-like compositions 
for the dizi call for dazzling finger techniques. Frequently, a modern Chinese orchestra supports dizi 
melodies with harmony that did not exist in traditional Chinese music. From a historical view, the rise 
of the new dizi repertory reflected the tide of the “National music” (in Chinese, ‘guo-yue’ or ‘minyue’) 
after 1940s, which was strongly influenced by Western music. 

Lau (1995) related this development of dizi music to the process of modern nation-state 
formation. He divided the history after 1949 of the dizi repertory into three periods according to the 
dominant stylistic norm found in most compositions. 

 
In the first period (1949-1964), most of the solo dizi pieces are characterized by the use of the theme and 
variation procedure, and the music is extracted almost exclusively from various regional instrumental 
ensemble repertories. [...] In the second stage of its developments (1965-1978; the period generally 
referred to as the Cultural Revolution) many dizi composers [...] turned to revolutionary songs as the 
basis for the compositions. [...] In the third phase of dizi music development (from 1979 to 1989), after 
the fall of the Gang of Four and in the spirit of cultural liberalism [...] dizi composers began to 
incorporate new musical ideas, innovative performing techniques, and experimental formal principles in 
their compositions. 
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 Lau (1995) also classified dizi music into the categories traditional repertory, composed 

repertory, and imported repertory. According to his statistics on approximately 400 dizi pieces, over 
60% were composed repertory, while traditional and imported repertory each occupied roughly 15%. 

2.7.2 Instrument evolutions 

In addition to the repertory, the new trends of dizi music also stimulated instrument evolutions. 
As musical ideals shifted and new compositions called for equal-tempered scales, makers repositioned 
finger-holes accordingly. In the 1920s, a fully chromatic dizi, xindi (literally ‘new flute’) or lüdi 
(literally ‘tempered flute’), was invented, with eleven finger-holes but usually without the membrane 
hole (Gao 1959). This membrane-less bamboo flute is especially suitable for a large, modern orchestra, 
where bright dizi tones due to the membrane are not favored because they cannot blend with other 
instruments. While the modern Chinese orchestra was established after the model of the Western 
orchestra, the xindi can be regarded as a symbol of the westernization of Chinese music. This 
instrument was designed to play all notes appearing in Western music notation and the membrane was 
replaced by a rigid wall to produce mellow flute tones comparable to those of the Western flute. 

A more important development of the dizi is the invention of the large dizi. Large dizi with 
various sizes larger than the qudi have been invented in the past several decades. Among them the 
large dizi in G (●●●○○○○ = G4) is most frequently used, whose tone range is D4 to G6. Although 
the large dizi is comparable in tone range to the large membrane flute in Korea, the taegum, they 
employ different techniques and show different styles. Lin (1997) indicated that the large dizi matches 
the traditional Chinese literati culture very well. As some compositions for the large dizi show a 
philosophical impression similar to Qin music, this instrument has opened a new page in the music 
history of the Chinese membrane flute, as will be further discussed in section 9.5. 

The paralleled-di (‘peidi’ in Chinese) was invented in the 1950s by Zhao Songting, a great dizi 
musician, composer and educator. He bundled two, three or four dizi with different sizes together, so 
that it is easier to switch from one dizi to another (Zhao 1985). 

A large, curved dizi is used by the musician Hu Jiexu. The curved tube enables the musician to 
hold the long instrument with widely separated finger-holes in a more comfortable position. Large dizi 
with a U-tube has been invented after the model of the Western U-tube flute, but is rarely used. 

The dizi with two membrane-holes was invented by the contemporary musician Li Chen. It is 
designed to reduce the inhomogeneity of the dizi timbre. Because of the enhanced acoustic effects of 
the two membranes, this dizi sounds rather buzzing, sometimes rough. 

Among these recent construction developments of the dizi, three are relevant to the membrane. 
The xindi discards the membrane, thus losing the characteristic timbre of the dizi, whereas the buzzing 
timbre of the dizi is exaggerated by the dizi with two membranes. The rise of the large dizi is associated 
with interesting acoustic effects of the membrane on a large flute. 
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2.7.3 New performance techniques 

Not only have the instrument themselves evolved, new performance techniques have also been 
developed over the past fifty years. Some of them were triggered by the performance techniques of the 
suona, a Chinese double-reed instrument with a flare. For instance, Zhao Songting introduced the 
suona technique of circular breathing to the dizi, probably based on his early experience of playing the 
dizi and the suona in regional music ensembles. 

Playing the dizi with vibrating lips, just like playing a brass instrument, is similar to the advanced 
suona technique: kachiang. It is difficult to apply this technique to woodwind instruments, because 
there is no mouthpiece supporting the player’s lips. Playing the dizi with vibrating lips produces a 
timbre similar to the Chinese transverse reed instrument: the bawu. The reedy sound results from the 
sympathetic vibrations of the non-linear membrane. 

Two new performance techniques combine singing with the dizi. Singing while playing the dizi, 
and singing into the dizi are two different techniques. The former produces a two-voice texture 
consisting of the singing voice and the dizi tone, while the latter introduces an interesting timbre by 
exploiting the non-linear property of the dizi membrane. When singing into the dizi, the player’s 
mouth entirely covers the mouth hole of the dizi. The singing voices are much brighter than normal 
human voices, recalling tones produced by the mirliton. 

Two innovative techniques appear in ‘Langye Shenyun’ (A Wonderful Melody of Mountain 
Langye) composed and performed by Yu Xunfa. The first – whistling into the dizi – often produces 
two pitches, one corresponding to whistling and the other corresponding to the turbulence noises 
filtered by the pipe. The second technique in ‘Langye Shenyun’ is hitting the finger-holes with the 
fingers but without blowing. Because the air column excited by the hitting fingers has definite 
resonances, a pitch sensation can be evoked, although it is always rather short and weak because of fast 
decay. This technique is also employed in contemporary Western flute music, but it may be more 
suitable for flutes without keys, because hitting violently can lead to damage of the keys. 

 
 

 
 

 
 

 
Figure 2.3: Triad-like multi-phonics produced by blowing the third finger-hole of the dizi. 
 

blowing 
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Multi-phonics of wind instruments, sometimes used in contemporary Western music, also appear 
in dizi music. In ‘Qiohu Yueyie’ (A Night With Moon at Autumn Lake) composed and performed by 
Yu Xunfa, multi-phonics are used to imitate a multi-phonic bell sound. By blowing into the fourth 
finger-hole instead of the mouth hole, Jan Yuoming produces triad-like multi-phonics in his 
composition ‘Ting Quen’ (Listening to The Spring). Fig. 2.3 illustrates the notes and the fingerings for 
the triad-like multi-phonics. 

Among these new techniques, blowing into a finger-hole cannot be applied to the Western flute 
with keys. Singing into the flute and playing the flute with vibrating lips are techniques closely related 
to the non-linear property of the membrane. Although they can be applied to the Western flute, the 
effects will be less remarkable because few harmonics will be generated. 
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Chapter 3.  

Acoustic effects of the membrane 

Abstract 

The acoustic properties of a flute are noticeably changed by replacing a small region of the rigid wall 
of its pipe with a membrane. The membrane makes most flute tones lower and reduces the playability 
of notes in the third octave, thus restricting the dizi tone range to two octaves plus two notes. An 
appropriately slack membrane is important for the qudi and the large dizi to produce characteristic 
buzzing low tones. But if the membrane is too slack, the dizi will become uncontrollable: some notes 
in the first and second modes are difficult to play and tend to jump to the higher play modes. To avoid 
this, musicians have to stretch the membrane carefully to produce a lot of lateral wrinkles in it. 

Although the membrane brings a bright timbre to the flute, the dizi timbre is not homogenous. 
Because the membrane vibrates more when pressure antinodes lie below it than it does for pressure 
nodes, its acoustic effects vary with pitch. According to spectral characteristics, the dizi tone range is 
divided into five registers. In the first register, rich harmonics produce a buzzing sound quality. The 
second register is characterized by weak even-numbered harmonics. In the third register, in addition 
to the predominance of odd-numbered harmonics, subharmonics with frequencies (2n-1)f0/2 may 
appear, resulting in a rough quality. Dizi tones in these lowest three registers always have two 
formants (typically centered at 4–6 kHz and 10–14 kHz). The fourth register is characterized by the 
absence of upper harmonics, whereas the fifth register is characterized by their dramatic recovery. 

3.1 Introduction 

In chapter 2 a general introduction to the Chinese flute was given with the emphasis on the role of 
the membrane in dizi music. This chapter takes a closer look at the membrane’s acoustic effects. The 
description of these effects motivates the physical and psychoacoustic studies on the dizi in chapters 
4–9. 

Although the dizi is famous for its bright timbre differing significantly from Western flutes, a 
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common misconception about the dizi has been that the characteristic dizi timbre is due to its material: 
bamboo. While the influence of the material on the flute timbre still remains a matter of debate, it is 
easy to demonstrate that the membrane is more essential than the material in producing the 
characteristic timbre of the dizi. By mounting a membrane on a finger hole of a recorder or a baroque 
flute, their tones will become much brighter. On the contrary, if the dizi membrane is completely 
damped with the palm of a hand, its tones will lose all harmonics above 4 kHz. The characteristic 
bright sound of membrane flutes owes much to the sympathetic vibration of the membrane. 

As a first example, Fig. 3.1 compares the spectra of two tones produced by a dizi with the 
membrane replaced by a rigid wall surface, and with a vibrating membrane. The dizi was played twice 
with the same fingering. First, the membrane was covered with a palm, so that the membrane did not 
vibrate. As shown in Fig. 3.1(a), high-frequency harmonics remained fairly weak while the amplitude 
of the fundamental increased. In the second tone the dizi was played with the membrane vibrating 
freely. Fig. 3.1(b) shows a lot of high-frequency harmonics, whose amplitudes increased with the 
fundamental. The frequency of the 7th harmonics is about 5 kHz. 

The purpose of this chapter is to systematically describe the membrane’s acoustic effects. Since 
the dizi timbre and playability are very sensitive to the membrane’s properties, section 3.2 begins by 
summarizing the empirical rules of membrane-sealing. The pitch shifts and playability reductions 
caused by the membrane are described in section 3.3. The membrane results in an inhomogeneity of 
the dizi timbre, which leads to a subdivision of its tone range into registers. In section 3.4, five registers 
of the dizi are defined according to spectral features of dizi tones. 
 
 

 
(a) 

 

 
(b) 

                                                                    
Figure 3.1: Amplitude envelopes of harmonics of two crescendo tones produced by the same qudi in D 
with fingering ●○○○○○ . (a) Tone produced without membrane vibration. The fundamental 
frequency increased from 733 Hz to 751 Hz as the intensity increased.  (b) Tone produced with 
membrane vibration. The fundamental frequency increased from 725 Hz to 735 Hz as the intensity 
increased. These spectral plots were generated by J. Beauchamp’s spectral analysis and display 
package “Sndan”. 
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3.2 Empirical rules of membrane-sealing 

As the membrane is crucial for dizi sound production, one important lesson when beginning to 
learn to play the dizi is the ‘art’ of choosing and sealing the membrane. Although the empirical rules of 
membrane-sealing are well-mentioned in dizi textbooks, they cannot be learned without a teacher’s 
demonstration and the student’s own trail-and-error. 

The dizi membrane is made of a square of skin peeled from the inside of reed or bamboo. It is 
larger than the membrane hole, and is affixed with water-soluble glue. A membrane sealed on the dizi 
can work for several months. If the tension in the membrane becomes too low, a player can increase it 
by applying saliva and gently spreading the edges of the paper. To get the “correct” timbre of the dizi, 
it is important to adjust the membrane with appropriate lateral wrinkles. These thin wrinkles should be 
distributed uniformly across the membrane and not overlap each other (see Fig. 3.2). 

There is no standard method of membrane-sealing for the dizi. The tension and thickness of 
membrane desired depend on the instrument and repertoire. For bangdi music, commonly containing a 
lot of high notes, the membrane is on average thicker and sealed more tautly than that for qudi music. 
If the membrane is sealed slackly, high notes will be difficult to play. However, a taut membrane will 
reduce the spectral content of dizi tones because the amplitude or the membrane’s vibration is small. In 
most works for the qudi and the large dizi, the membrane should be sealed more slackly, because there 
are few high notes but more low, soft notes. With a taut membrane, soft dizi tones will be too dull and 
the lowest two notes will lose the characteristic buzzing sound quality. The size of the membrane also 
affects the amplitude of the membrane’s vibration. As more vibration of the membrane is desired in 
works for the qudi and the large dizi, their membrane holes are slightly larger than that of the bangdi. 

 

 
 

Figure 3.2: Photo of the dizi membrane. 
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3.3 Pitch and playability 

An immediate acoustic effect of the membrane is that the pitches of most dizi tones are lowered. 
It can be noted from Fig. 3.1 that the two dizi tones were played with the same instrument and 
fingering, but they had different pitches. In this specific experiment, the vibrating membrane made the 
fundamental frequency of the dizi tone decrease from 740 Hz to 730 Hz. 

The second acoustic effect of the membrane is the playability reduction of high notes. A 
membrane flute has a more limited tone range in comparison to a membrane-less flute. With a 
vibrating membrane, the dizi tone range is about two octaves plus two notes. Notes beyond this range 
demand a very concentrated embouchure and a taut membrane, thus seldom used in traditional 
repertoires. If the membrane is replaced with a rigid wall, the dizi tone range could extend to three 
octaves. The membrane reduces the playability of dizi tones in the third octave. 

Next to the membrane tension, wrinkles in the membrane are of great importance for dizi 
playability and timbre. If the membrane is sealed tautly and is free from wrinkles, the dizi tones will 
become dull as the membrane hardly vibrates. A slack membrane without wrinkles can generate bright 
tones, but makes the instrument uncontrollable. The dizi can be so unstable that it either emits no 
sound when being blown, or suddenly it sounds raucously. Soft dizi tones become impossible to play. 
Furthermore, the upper notes in the first play mode tend to jump to the second play mode; the lower 
notes in the second play mode tend to jump to the third play mode. In order to avoid these problems, 
musicians must stretch the membrane carefully to produce a lot of lateral wrinkles in it. Wrinkles in 
the membrane serve largely to stabilize the sound production of the dizi. 

3.4 Inhomogeneity of the dizi timbre 

For a membrane flute, the membrane is driven by the acoustic pressure in the resonator and 
radiates sounds when it vibrates. Because the membrane vibrates more when pressure antinodes lie 
below it than it does for pressure nodes, its acoustic effects vary with pitch and hence the timbre in the 
entire tone range is not homogenous. This inhomogeneity of timbre is inevitable for all membrane 
flutes, including the Korean membrane flute, the taegum. It is interesting to note that taegum players 
favor this inhomogeneity of timbre, considering that it makes the taegum a perfect solo instrument 
(Howard 1988). On the contrary, most of the modern dizi players dislike the timbre inhomogeneity of 
the dizi. Both dizi musicians and manufacturers have been making great efforts to remove it. 

In this thesis, I divide the dizi tone range into five registers, which are shown in Table 3.1. These 
five registers are defined according to spectral characteristics of dizi tones. It is important to note that 
this division is applicable mainly to the dizi whose membrane is located at the midpoint between the 
mouth hole and the uppermost finger hole. If the membrane hole is located higher or lower, the 
division of register will be different. 
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Play mode Fingering Note Register 

●●●●●● G4 
●●●●●○ A4 
●●●●○○ B4 
●●●○○○ C5 

First register 

●●○○○○ D5 
●○○○○○ E5 
○●●○○○ F5 

First mode 
 

○○○○○○ F#5 

Second register 

○●●●●● G5 
●●●●●○ A5 
●●●●○○ B5 
●●●○○○ C6 

Third register 

●●○○○○ D6 
●○○○○○ E6 
○●○●○● F6 

Second mode 
 

○○○○○○ F#6 

Fourth register 

○●●●●● G6 
●●○●●○ A6 
●○●●●● B6 

Fourth mode 

●○●○○○ C7 

Fifth register 

 

Table 3.1: Five registers of the qudi in C. The highest two notes B6 and C7 are difficult to play unless 
the membrane is very taut. They are seldom used in traditional repertoires. 

3.4.1 First register 

The dizi tones in the first register have a smooth spectral envelope, which shows a formant 
typically centered between 4 kHz and 6 kHz. This formant was first mentioned by Horner et al. (1999). 

Fig. 3.3 shows a spectrum of the lowest tone in the first register. A second formant centered at 12 
kHz can be observed. If the tone intensity is higher, the harmonics above 10 kHz will be stronger. 
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(a) 

 

(b) 

 
Figure 3.3: Spectrum of a soft note in the first register of the qudi and the location of its membrane. (a) 
Spectrum of G4 produced by a qudi in C. First play mode, fingering ●●●●●●. Two formants at 5 
kHz and 12 kHz can be observed. (b) Location of the membrane in relation to the fundamental 
acoustic pressure wave. 

3.4.2 Second register 

The dizi tones in the second register also have two formants, one typically centered at 4–6 kHz 
and the other at 10–14 kHz. More important, the odd-numbered harmonics above 2 kHz are 
significantly stronger than the flanking even-numbered harmonics, especially around the two formants. 
Fig. 3.4(a) shows a “jagged” up-and-down spectral envelope due to weak even-numbered harmonics. 

The large amplitude differences between the odd/even-numbered harmonics brings a sound 
quality that can recall the panpipes or the clarinet, whose tones are characterized by the predominance 
of the odd-numbered harmonics. The relevance of Helmholtz’s auditory hollowness and nasality to 
this sound quality will be dealt with below (see chapter 8). 
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(b) 
 

Figure 3.4: Spectrum of a note in the second register of the qudi and the location of its membrane. (a) 
Spectrum of E5 produce by a qudi in C. First play mode, fingering ●○○○○○. Two formants at 5 kHz 
and 12 kHz can be observed. Above 3 kHz the odd-numbered harmonics are always stronger than the 
flanking even-numbered harmonics. (b) Location of the membrane in relation to the fundamental 
acoustic pressure wave. 

 
It is important to note that the predominance of the odd-numbered harmonics can be reduced or 

eliminated by modifying the embouchure. When the jet is blown downward, the odd-numbered 
harmonics will no longer dominate, as shown in Fig. 3.5. This is likely to occur in fortissimo tones. 
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Figure 3.5: Spectrum of E5 produced by a qudi in C (second register). First play mode, fingering ●○

○○○○. As the jet is blown downward, there is no significant predominance of the odd-numbered 
harmonics. 

3.4.3 Third register 

The spectra of the dizi tones in the third register always have two formants and are dominated by 
odd-numbered harmonics, like those in the second registers. These two spectral features can be 
observed in Fig. 3.6(a), which shows the spectrum of the lowest note in the third register produced by 
a qudi in C. 

A third spectral feature, the high-frequency distribution of subharmonics, can emerge in this 
register with an appropriate embouchure. Fig. 3.6(b) shows the spectrum of the lowest note in the third 
register produced by a large dizi in G. It can be observed that above 4 kHz subharmonic components 
appear at the midpoint of pairs of adjacent harmonic components. These subharmonics, with 
frequencies (2n-1)f0/2, characterize most soft dizi tones in the third register. Regarding perception of 
dizi tones, subharmonics do not make the pitch an octave lower, but bring a rough sound quality to the 
tones in this register, which recalls some pathological human voices. Auditory roughness induced by 
subharmonics at high frequencies will be discussed in chapter 9. 
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Figure 3.6: Spectra of the lowest note in the third register of the dizi and location of its membrane. (a) 
G5 produced by a qudi in C. Second play mode, fingering ○●●●●●. (b) D5 produced by a large dizi 
in G.  Second play mode, fingering ○●●●●●●. Above 2 kHz, some subharmonic spectral lines 
appear between harmonic spectral lines (marked with circles). (c) Location of the membrane in 
relation to the fundamental acoustic pressure wave. 

(a) 

(b) 

(c) 
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For the two highest notes in the third register, the predominance of odd-numbered harmonics 
tends to be less significant, as can be seen in Fig. 3.7(a). The spectrum of this tone does not show the 
two formants. Hence, it can be regarded as a transition to the next register, which is characterized by 
poor spectral content. 

Another characteristic of the two highest notes in the third register is the widening of spectral 
lines of the subharmonics. This is likely to occur with a slacker membrane. Fig. 3.7(b) shows the 
spectrum of such a tone produced by a qudi in D. The subharmonic components differ from the 
harmonic components in spectral-line-widening. Musicians describe such an annoying sound quality 
as “sandy”. 

 

 

(a)                                                                (b) 

Figure 3.7: Spectra of the highest note in the third register of the dizi. (a) C6 produced by a qudi in C. 
Second play mode, fingering ●●●○○○ . Significant amplitude differences between odd- and 
even-numbered harmonics are restricted to the range below 5 kHz. The two formants are absent as the 
tone intensity is low. (b) D6 produced by a qudi in D. Second play mode, fingering ●●●○○○. The 
spectral lines of the subharmonics are widened. 

3.4.4 Fourth register 

The fourth register of the dizi is distinct from other registers in that it has a poor spectral content. 
Fig. 3.8(a) shows the spectrum of such a dull tone produced by a qudi in C. This spectrum is 
dominated by the lowest two harmonics and shows no formant. Instead of harmonics, turbulence 
noises are distributed above 10 kHz. Dull dizi tones in this register thus always sound breathier than 
tones in other registers. 

The poor spectral content can be explained by the acoustic pressure in the pipe. Fig. 3.8(b) shows 
the membrane location in relation to the fundamental acoustic pressure wave. In this register, the 
membrane is located near a pressure node of the fundamental wave. Consequently, it is driven by a 
weak acoustic pressure and hardly vibrates, hence not generating rich harmonics. A conspicuous 
absence of brightness is the most remarkable feature of the timbre inhomogeneity of the dizi. 
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(a) 

 
 
 

(b) 
Figure 3.8: Spectra of a note in the fourth register of the dizi and location of its membrane. (a) E6 
produced by a qudi in C. Second play mode, fingering ●○○○○○. The spectrum shows no formant 
and the harmonics decay rapidly as its frequency increases. (b) Location of the membrane in relation 
to the fundamental acoustic pressure wave. 

3.4.5 Fifth register 

The fifth register is characterized by a striking recovery of brightness. The lower tones of the 
fourth play mode have rich harmonics, because the membrane is located near a pressure antinode of 
the fundamental. Fig. 3.9(a) shows the spectrum of a tone in the fifth register produced by a qudi. The 
frequency range of the harmonics distribution extends to 18 kHz. For the bangdi, whose tone range is 
higher than the qudi, the tones in the fifth register sound even more powerful. Fig. 3.9(b) shows the 
spectrum of a short forte tone produced by a bangdi. The harmonics above 12 kHz are fairly strong. 
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Figure 3.9: Spectra of notes in the fifth register of the dizi and location of its membrane. (a) G6 
produced by a qudi in C. Fourth play mode, fingering ○●●●●●. (b) E7 produced by a bangdi in A. 
Fourth play mode, fingering ○●●●●●. Spectral components below 2 kHz are produced by other 
instruments. (c) Location of the membrane in relation to the fundamental acoustic pressure wave. 

(c) 

(b) 

(a) 
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3.4.6 Overview of the five registers 

Some concluding remarks should be made regarding the division of registers. The five registers 
of the dizi are divided according to three spectral features: (1) the distribution of harmonics at high 
frequencies, (2) the average amplitude difference between flanking odd/even-numbered harmonics, 
and (3) the distribution of subharmonics at high frequencies. Fig. 3.10 illustrates the variation of these 
three features across the five registers. These curves are drawn according to informal estimation.  It 
can be noted that the transitions from the first to the second and from the third to the fourth register are 
gradual, whereas the transitions from the second to the third and from the fourth to the fifth register are 
sharp. 

It is important to note that both the predominance of odd-numbered harmonics and the 
subharmonics distribution depend on the embouchure. Consequently, these two spectral features are 
not as robust as the distribution of harmonics at high frequencies. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.10:. Three spectral features varying across the five registers of the dizi: distribution of upper 
harmonics (—), average amplitude difference between adjacent odd/even-numbered harmonics (—．), 
and distribution of upper subharmonics (…).  

3.5 Conclusions 

The acoustic effects of the dizi membrane include (1) pitch reductions (2) tone range restriction, 
and (3) timbre changes. The vibrating membrane of the flute will make most pitches lower and reduce 
the playability of the notes in the third octave. To play bangdi music containing high notes, the 
membrane should be thicker and sealed more tautly than that for a qudi. A slack membrane is 
important for the qudi to produce buzzing low tones. However, if the membrane is too slack, the dizi 

pitch 

1st  register 3rd  register 2nd  register 4th  register 5th  register 
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will be uncontrollable. The upper notes in the first play mode tend to jump to the second play mode, 
while the lower notes in the second play mode tend to jump to the third play mode. Furthermore, soft 
tones are impossible to play. Lateral wrinkles in the membrane largely stabilize the sound production 
of the dizi. 

The membrane results in dizi timbre inhomogeneity. According to spectral characteristics, the 
dizi tone range is divided into five registers. In the first register, dense harmonics extending beyond 10 
kHz produce a bright, buzzing sound quality. The second register is always characterized by weak 
even-numbered harmonics. The predominance of the odd-numbered harmonics can be reduced by 
modifying the embouchure. In the third register, subharmonics with frequencies (2n-1)f0/2 can appear. 
While the dizi tones in the lowest three registers always have two formants centered at 4–6 kHz and 10 
-14 kHz, the fourth register is characterized by the absence of rich harmonics. The fifth register is 
characterized by a recovery of brightness and the harmonics distributed above 10 kHz can be so strong 
that the dizi tones are fairly sharp. 
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Chapter 4.  

Input impedance of the pipe-membrane resonator1 

Abstract 

The linear behavior of the dizi resonator, a pipe-membrane system, is studied by modeling its 
membrane as a piston. Input impedance calculation of a pipe-membrane system shows some 
phenomena common in soundboard-string systems. Resonance shifts and admittance reductions 
predicted by this linear piston model are consistent with the impedance measurements of a simple 
pipe-membrane system. Impedance measurements of the qudi in C show resonance shifts caused by 
the membrane of up to 60 cents. Musicians can compensate for the intonation distortions due to the 
membrane by modifying the embouchure. Typically, the resonant frequency of the membrane fm lies 
between 2 kHz and 3 kHz for the qudi and the large dizi. Experimental results show that admittances 
of the bore resonances of the qudi in C supporting the notes B6 and C7 are largely reduced by the 
membrane, because the vibration modes of the pipe-membrane resonator of the dizi are damped by 
the membrane when the pipe’s resonances are near fm. Consequently, the dizi range is restricted to 
about two octaves plus two notes. Since fm sets an upper limit of the tone range, the membrane of the 
bangdi tends to be sealed more tautly than that of the qudi for producing high notes. 

4.1 Introduction 

Since Bernoulli, the flute has been known to oscillate with the fundamental frequency 
corresponding to one of the resonances of the pipe. These resonances are minima of its input 
impedance curve (i.e., maxima of the admittance curve). This contrasts with reed or lip-reed 
instruments, whose resonances are maxima of the impedance curve. 

For decades, it has been standard to measure or to calculate the impedance curves of woodwind 

                                                      
1 This chapter is based on work performed at the Acoustics Laboratory of the University of New South Wales, 

with the assistance of Joe Wolfe and John Smith. 
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instruments to estimate pitches corresponding to various fingerings. This approach is also basic for the 
present study of the dizi, as no such measurement has been published. More important, the impedance 
curve depends not only on the fingering, but also on the state of the membrane. Input impedance 
measurements in various states of the membrane are expected to reveal the influence of the membrane 
on the linear behavior of the dizi. 

The purpose of this chapter is to explain the effects of the membrane on pitch and playability by 
impedance calculation and measurements. As mentioned in chapter 3, the membrane makes the 
pitches of most dizi notes lower and the playability of the tones in the fifth register decreases with the 
tension of the membrane. A slack and thin membrane brings a bright timbre to low notes at the 
expense of tone range. 

When the wavelengths of dizi tones are much longer than the size of the membrane, only the (01) 
mode of the membrane is excited. In this chapter, the membrane is modeled as a piston attached to a 
linear spring. The equations of motion of the dizi resonator are derived and its impedance is calculated 
in section 4.2. Section 4.3 addresses experimental studies on impedance measurements of a simple 
pipe-membrane system and the dizi. The results are related to dizi performance practice in section 4.4. 

4.2 Piston approximation 

4.2.1 Equations of motion 

The radius of the membrane hole of the dizi is much smaller than the wavelengths of the tones 
produced by the instrument; a/㮰 = o(10-1). Over the range of frequencies studied, it is expected that 

only the (01) mode of the membrane is excited. In this chapter, the dizi membrane is modeled as a 
piston sealing the membrane hole and mounted on a spring. This piston model is illustrated in Fig. 4.1. 

 
 

 

 

 

 

 

Figure 4.1: Modeling the membrane as a piston. (a) A vibrating membrane on a hole in the wall of a 
pipe. (b) A vibrating piston attached to a spring. 

 

(b) (a) 
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In a low-frequency approximation, the air loading as an end correction term is included in 
piston’s mass and the radiation loss is ignored. The non-linearity of the piston’s spring is not 
considered here. It is involved in dizi sound production when the vibration amplitude of the membrane 
is large. Medium- and large-amplitude vibrations of the membrane will be explored in chapters 5 and 
6. 

First, we use this model to derive the wave equations of the air column in the pipe, which is 
coupled to a piston in its wall. When the Helmholtz number based on the pipe diameter D is small, 
namely He = f D/c = o(10-1), the acoustic wave in the pipe can be described in terms of plane waves. 
The wave equations of the acoustic pressure p(x,t) and the acoustic flow U(x,t) are 

 

xt U
S
c㰐-p
0

2
0=                                                                (4.1) 

tx U
S
㰐-p

0

0=                                                                   (4.2) 

where S0 = 㰀D2/4 is the cross-sectional area of the pipe, c the speed of sound and 㰐0 the average air 

density. 
Eq. (4.1) describes the compressive elasticity of the air. In the presence of a piston in the wall of 

the pipe, this equation is modified as the moving piston introduces extra airflow. We focus on the air 
under the piston, which is illustrated in Fig. 4.2 as a window. 

 
 

 
 
 
 
 

 

Figure 4.2: Acoustic flow in the window under the piston. U- and U+ are the flows through the left side 
and right side of this window; 㯠 is the displacement of the membrane and p is the acoustic pressure in 

the window. 

 
At low frequencies, the sound propagation in this window can be neglected. Hence, the pressure 

in the window is assumed to be uniform; Eq. (4.2) becomes px = 0. This assumption is available only 
for the lower harmonics of dizi tones. A brief discussion on the limitation of this assumption is given in 
the following intermezzo. 

p U- U+ 

㯠
‧

 

S0 

2a 
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Intermezzo 

The assumption of a uniform pressure in the window shown in Fig. 4.2 is available only when a 
<< 㮰 and D << 㮰. At high frequencies, the vibrating membrane can induce local air density 
fluctuations so that the acoustic pressure in the window is no longer uniform. For example, when the 
Helmholtz number He = 1/4, a higher mode of the air column in the pipe can be excited. Pressure 
fluctuations reach its maximum at the bottom of the window, as illustrated in Fig. 4.5(a). 

Fig. 4.5(b) illustrates an analogue for this caricature. Imaging a pressure source above the 
membrane hole and removing the membrane, we get a series of pressure wave antinodes that establish 
equilateral triangles. The wavelength of this mode is equal to 4D, where the membrane serves as an 
acoustic flow source instead of an acoustic pressure source. For a large dizi in G, D=16mm, the 
eigenfrequency of this mode is approximately 5 kHz. Regarding high-frequency harmonics possibly 
produced by the membrane, the assumption of a uniform pressure in the window is only available in 
discussing the fundamental and several low-order harmonics of dizi tones. Higher modes of the air 
column in the pipe will be further discussed in section 6.5. 

 

  

  

  

  

  

  

  

  

  

 
Figure 4.3: A transverse mode of the pipe excited by the vibrating membrane in its wall. Helmholtz 
number He = fD/c = 1/4. The arrows represent acoustic flow streamlines. (a) The membrane as a flow 
source. (b) In an analogue the membrane is replaced by a pressure source above the membrane hole. 
The circles represent pressure antinodes and their phase relations are labeled by plus and minus 
symbols. 
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From Fig. 4.2, the total flow out the window is 
 

ξ&& mxmout SaUySUUU +≈+−= −+ 2                                                 (4.3) 

 
where Sm = 㰀a2 is the area of the circular piston. For the air in the window, Eq. (4.1) becomes 
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2
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0 ξ

π &aU
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c㰐-p xt +=                                                            (4.4) 

 
Eq. (4.4) represents a source term of acoustic pressure waves in the pipe corresponding to the 

piston’s velocity. It is important to note that the vibrating piston induces an acoustic flow difference at 
the left and right sides of the window, thus serving as a pressure source. The effective pressure in the 
window induced by the piston is in proportion to its displacement y. 

 

 
20

2

ξ
㰀a

S
㰐c-peff =                                                              (4.5) 

 
Finally, the motion of the piston must be described by Newton's equation, 
 

pSmRm mm =++ ξωξξ 2&&&                                                       (4.6) 

 
where m is the piston’s mass, R its damping coefficient, and 㲐m its resonant angular frequency. Eqs. 

(4.4) and (4.6) are the motion equations of the piston and the air under it at low frequencies. It can be 
noted from Eq. (4.6) that when the piston is located at a pressure node of an acoustic wave, it hardly 
vibrates. 

4.2.2 Input impedance of a pipe-membrane system 

 
 
 

 

 
 

Figure 4.4: A pipe with a membrane sealed on a hole in its wall. 
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The input impedance of a pipe-membrane system depends on the location of the membrane. 

Consider the pipe-membrane system illustrated in Fig. 4.4. 
Referring to the impedance of an open pipe, we obtain 
 

2
0

2 tan kL
jZ
pU =                                                          (4.7) 

 
Referring to Eq. (4.6), the mechanical impedance of the membrane modeled as a mass-spring 

system is 
 

ω
ωω

ξ
)( 22

m
mechanical

jmRFZ −
+==

&
                                           (4.8) 

 
The membrane's acoustic impedance is related to its mechanical impedance by the 

formula 
 

2
m

mechanical

top
acoustic S

Z
U

pZ ==                                                   (4.9) 

 
At low frequencies, the sound propagation in the window can be neglected. So U2 = - U1 - Utop. 

Since 
 

acoustictop ZpU =                                                              (4.10) 

 
the impedance at the left side of the window is 
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2

2
2

+

−
==                                              (4.11) 

 
The input impedance of a pipe with a general termination can be calculated when the impedance 

of its termination is known. The input impedance ZIN of the pipe with length L1 is related to Z2 by Eq. 
(8.23) in [Fletcher & Rossing 1991]. 
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                                             (4.12) 

The expression of ZIN in terms of L1, L2 and Zacoustic can be obtained by substituting Eqs. (4.8), (4.9) 
and (4.11) to Eq. (4.12). The general form of ZIN is complicated, but if the membrane is exactly located 
at the middle of the pipe, namely L1 = L2 = L, the input impedance becomes 
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=                                     (4.13) 

 
It is clear that Eq. (4.13) gives the input impedance of an open pipe with length 2L as Zacoustic → ∞, 

while it gives the input impedance of an open pipe with length L as Zacoustic → 0. The former case 
corresponds to replacing the membrane with a rigid wall; the latter case corresponds to replacing the 
membrane with an ideal open hole, which is not physically realizable. 

The pipes used in our experiments have radius r0 < 8mm. It is thus reasonable to ignore the 
radiation loss but not the wall loss. The wall loss is taken into account by introducing an imaginary part 
of the wave number k. 
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where 㯐w is the phase velocity and 㬐w is the attenuation coefficient per unit length. Their values are 

given in Eqs. (8.14) and (8.15) in [Fletcher & Rossing 1991]. 
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4.2.3 Admittance reductions, resonance shifts and splitting 

Combining Eqs. (4.13) with (4.14), we can predict the input impedance of the dizi. Fig. 4.5 gives 
a theoretical input admittance curve 1/∣ZIN∣of a pipe-membrane system, whose configuration 

mimics the resonator of a large dizi in G with all finger holes open. The bore resonances are 
represented as peaks in this curve. 
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Figure 4.5: A theoretical admittance curve of a pipe with a membrane in the wall at the midpoint. The 
curves for the open pipe with (―) and without (- - -)  membrane vibration are compared with the 
acoustic admittance curve of the membrane (―．). Resonant frequency of the membrane fm = 㲐m/2㰀 
= 3.5 kHz. Mass of the membrane m = 8×10-7 kg. Damping coefficient R = 6×10-4 sec-1kg. Length of 

the pipe 2L = 240 mm. Radius of the pipe r0 = 9 mm. Radius of the membrane hole a = 5 mm. This 
configuration mimics a large dizi with the fingering ○○○○○○○. 

 

It can be observed that the membrane does not affect the even-numbered bore resonances of the 
pipe, as it is located at a pressure node of these standing waves. On the other hand, admittances of the 
odd-numbered resonances are reduced by the membrane, as it is located at a pressure antinode of these 
standing waves. The linear piston model of the dizi membrane predicts significant admittance 
reductions of the bore resonances close to the membrane’s resonant frequency fm. These 
odd-numbered vibration modes are damped by the membrane, whose damping is much larger than the 
wall loss in the pipe. 

Next to the admittance reductions, the odd-numbered bore resonances are shifted away from the 
resonant frequency of the membrane. The fifth resonance, lying near the membrane’s resonant 
frequency fm = 3.5 kHz, is split into two resonances in the presence of the membrane. The lower 
resonance corresponds to that the membrane moves in phase with the acoustic flow wave, while the 
higher resonance corresponds to that the membrane moves in opposite phase with the acoustic flow 
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wave. Fig. 4.6 depicts the eigenfunctions of the two resonances calculated by Eq. (4.4). For simplicity, 
the resonance splitting here is assumed to occur at the first mode. 
 

 
Figure 4.6: Eigenfunctions of the air column in an open pipe with a membrane in the wall at the 
midpoint when the lowest resonance of the air column lies near fm. (a) The membrane moves in phase 
with the acoustic flow wave. The wavelength becomes longer; 㮰'>㮰. (b) The membrane moves in 
opposite phase with the acoustic flow wave. The wavelength becomes shorter; 㮰''<㮰. 

 
As can be seen in Fig. 4.6, the standing waves in this pipe-membrane system are characterized by 

the discontinuities of Ux at the left and right sides of the window. The magnitude of Ux becomes larger 
or smaller as the membrane moves in phase or in opposite phase with the acoustic flow wave. These 
discontinuities of Ux are compensated for by the vibrating piston, which induces a airflow difference 
between the left and right sides of the window. In the real three-dimensional world, however, these 
discontinuities are smoothed. 

Admittance reductions, resonance shifts and resonance splitting in a pipe-membrane system are 
analogous to those in the coupled system consisting of a vibrating string terminated on a soundboard. 
The impedance of string-soundboard systems was calculated by Gough (1981). In the weak coupling 
limit, the coupling to the soundboard increases the damping of string resonances, with little effect on 
their frequencies. In the strong coupling limit, the damping is greater. Furthermore, the frequencies of 
the string resonances are moved away from those of the soundboard resonance. Below the soundboard 
resonance, string and soundboard move in phase (a mass-like termination of the string). At higher 
frequency, they move in opposite phase (a spring-like termination). Resonance splitting at the 
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soundboard resonance gives rise to the well known wolf tone (Raman 1916, Schelleng 1963, Güth 
1978). 

The occurrence of the wolf tone in flue instruments was for the first time proposed by Dünnwald 
(1979). He built a special organ-pipe, whose top-plate was attached to a spring. This system behaved 
like a harmonic oscillator coupled to the air column in the pipe. The splitting of a resonance of the pipe 
was observed in his experiment. 

4.2.4 Resonant frequency, mass and damping coefficient of the membrane 

In principle, the membrane’s could be determined by its mass and effective spring constant, 
which could be calculated from the membrane’s static area elastic modulus. In practice, this is difficult 
because of the involvement of wrinkles in the membrane and its fragility. Further, the damping 
coefficient requires an AC measurement. I therefore measure membrane’s damping coefficient and 
resonant frequency acoustically. 

The behavior of a sinusoidally driven membrane is characterized by its displacement response, 
defined by 
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where 㯠s = F/m㲐m

2 is defined as the static displacement of the piston produced by a constant force F. 

In the measurements of input impedance curves under various fingerings of the dizi, the 
membrane is mounted directly on its membrane hole. In order to obtain the displacement response 
curve of the membrane mounted on the dizi, the impedance on the membrane hole is measured with all 
other holes of the dizi closed. The acoustic impedance of the membrane coupled to a stopped pipe is 
calculated as follows. 

Suppose that the two ends of the pipe in Fig. 4.4 are closed. The flow out of the topside of the 
window is 

 

1 2topU U U= − −                                                                 (4.18) 

 
Referring to the impedance a stopped pipe, we obtain 
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The total force on the membrane equals the acoustic force pSm plus the mechanical force 

ZacousticUtopSm. This yields the impedance at the membrane hole. 
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The acoustic impedance of the membrane is altered by an imaginary term, which represents its 

coupling to the pipe. With the measurements of Ztop, L1 and L2, the values of m, 㲐m and R can be 

estimated by fitting the theoretical curve of Ztop given by Eq. (4.21) to the experimental data. 

4.3 Experimental study 

4.3.1 Experimental setup 

The technique for impedance measurements used for the present study is in the Music Acoustics 
Laboratory in the School of Physics at the University of New South Wales. It is a development of a 
version originally designed in to operate very rapidly for measurements of the human vocal tract (Epps 
et al. 1997). It was used for studies on the Boehm flute, the classical flute, and the baroque flute (Wolfe 
et al. 2001a, Wolfe et al. 2001b). A detailed description of the experimental setup can be found in 
these papers. It is described briefly here. 

A waveform with the desired spectrum is synthesized by a computer and output via a 16 bit AD 
card and an amplifier to a concentric pair of loudspeakers. These are matched via an exponential horn 
to an attenuator, whose cross section is a narrow annulus, which attenuates standing waves in the 
attenuator below measurable levels, and which gives it a high output impedance (Za = 155 MPa.s.m-3 
or 155 M㪐) and thus provides a nearly ideal source of acoustic current. 

For calibration, the microphone at the output measures the impedance of the semi-infinite 
waveguide (Rref  = 8.5 M㪐), a stainless pipe with length of 42 m, in parallel with Za. This spectrum p(f) 
includes the frequency dependence of amplifiers, speakers, horn, attenuator and microphone. A new 
electrical spectrum Vcal(f), with Fourier components proportional to 1/p(f), is synthesized and output to 
the calibration load. This now produces a signal pcal(f) which, to the precision of the 16 bit card, is 
independent of frequency. Vcal(f) is output, and the spectrum pmeas(f) measured is now that of the 
measured load in parallel with the attenuator. The conductance of the latter is subtracted from the 
measured admittance to give Z(f). 

 
 



48 

 

 

ADC1
 Mac IIci 
computer

     impedance 
matching horn

microphones

loud- 
speakers

power 
amplifier

computer-controlled preamplifiers

DAC

ADC0

acoustic 
attenuator

impedance 
        being 
measured

 
 
Figure 4.7: Diagram of gear for input impedance measurements. 

4.3.2 Materials 

In order to obtain meaningful impedance measurements above 2 kHz, a stainless pipe with a 
membrane hole in the wall at the midpoint was used. This simple, open pipe was designed to avoid the 
cut-off frequency of the dizi due to the finger holes and four end holes, thus extending the frequency 
range of impedance measurements to 6 kHz. Its length is 598 mm and its inner radius is 3.9 mm. A 
membrane hole with radius 2 mm was bored at its midpoint. This hole was covered by a curved plate 
with a membrane hole, as illustrated in Fig. 4.8(a). 

 
 
 
 
 
 

(a) 
 

 

 
(b) 

Figure 4.8: Two pipe-membrane systems used in impedance measurements.  (a) Simple open pipe and 
a curved plate with a membrane hole. (b) Qudi in C. 

 
Within various sizes of the dizi, the qudi in C was chosen for impedance measurements, whose 

photo is shown in Fig. 4.8(b). Its inner radius is 8 mm and the wall thickness is 5 mm. Other physical 
dimensions are presented in Table 4.1. 

membrane 

stainless open pipe impedance head 
of spectrometer 
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 hole length hole width Bore diameter Position 

Top end   16.0 -215.0 

cork    -11.5 

embouchure hole 10.3 9.4  0 

membrane 10.0 8.5  89.5 

finger hole 1 9.3 8.2  168 

finger hole 2 9.3 8.2  193.0 

finger hole 3 9.2 8.2  225.0 

finger hole 4 9.2 8.2  262.5 

finger hole 5 9.2 8.4  285.0 

finger hole 5 9.6 8.5  320.0 

end hole 1 9.4 8.2  380.0 

end hole 2 9.2 8.1  381.0 

end hole 3 9.4 8.4  397.5 

end hole 4 9.4 8.4  419.0 

bottom end   17.4 456.0 

 
Table 4.1: Physical dimensions (in mm) of the qudi in C used for this study. The mouth hole, the finger 
holes, the membrane hole and the end holes are all approximately elliptical in shape, with the major 
axis (the length) parallel to the axis of the instrument. 

4.3.3 Experimental procedure 

4.3.3.1 Part one: Simple open pipe with a membrane in its wall at the midpoint 

The input impedance of the simple open pipe with a membrane in the wall at the midpoint was 
measured. The upper frequency limit is 6 kHz and the frequency spacing was 5 Hz. The input 
impedance curves were measured three times. Every time various values of fm were obtained by 
manipulating the membrane’s tension and the number of wrinkles in it. 

It was observed in experiments that the membrane’s tension was a strong function of humidity 
and of the geometry of its mounting, and it varied with time. Measuring its resonant frequency 
therefore posed procedural problems. In one series of measurements, a membrane was mounted on a 
plate that could be affixed to the dizi, but could also be affixed directly to the impedance head of the 
spectrometer. Using this system, the impedance of the membrane on the plate was measured alone, 
and then I affixed the membrane plate, measuring the input impedance of the instrument. Finally, the 
plate was removed and the impedance of the membrane was measured again. Thereby the value of fm 
and the membrane’s stability could be estimated. 

4.3.3.2 Part two: Dizi 

The input impedance of the qudi in C was measured with twelve standard fingerings. The upper 
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frequency limit was 4 kHz and the frequency spacing was 2.5 Hz. 
In the first series of measurements the membrane was replaced by a rigid wall. In the second 

series of measurements a membrane was sealed on the membrane hole. As in the part one experiment, 
the membrane’s impedance was measured before and after the input impedance measurements. It was 
performed by measuring the impedance on the membrane hole with all holes of the dizi closed, 
including the four end holes, the mouth hole and the end. This relatively simple geometry made 
possible to estimate the acoustic impedance of the membrane by Eq. (4.21). 

Finally, the input impedance of the qudi was measured with all finger holes and end holes closed. 
Under this special fingering the instrument was a simple open pipe. 

4.4 Results and discussion 

4.4.1 Resonance shifts and admittance reductions 

The input impedance of a simple open pipe was measured for demonstrating the performance of 
the impedance measurement technique. Fig. 4.9 shows its impedance curve in logarithmic scale. It can 
be seen that the experimental data match the theoretical curve fairly well. Here the radiation 
impedance Zradiation is taken into account by referring to the acoustic resistance for a flanged piston 
calculated by Olson (1957). 
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Figure 4.9: Input impedance for an open pipe. Inner radius r0 = 3.92 mm. Length 2L = 598 mm. 
Experimental data (．) and the theoretical curve (―) are compared. 
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Fig. 4.10 compares the displacement response curves of the membrane measured before and after 
the input impedance measurement of the simple open pipe with a membrane. As can be seen, 
agreement with an ideal forced damped oscillator is good at low frequencies, whereas the performance 
of the piston model above 3 kHz is poorer. 

 
Figure 4.10: Displacement response curves for the membrane. Experimental data (‘．’ and ‘+’) and 

the theoretical curves (―) are compared. Data measured before the input impedance measurement 
(．). Mass of the membrane m = 6×10-7 kg. Damping coefficient R=7×10-4sec-1kg. Resonant frequency 

fm = 3000 Hz. Data measured before the input impedance measurement ( + ). Mass of the membrane m 
= 6×10-7 kg. Damping coefficient R = 5.7×10-4sec-1 kg. Resonant frequency fm = 2750 Hz. 

 
As can be noticed in Fig. 4.10, the resonant frequency and the damping coefficient of the 

membrane changed after the input impedance measurement of the pipe-membrane system. This 
reflects the instability of the membrane. As the membrane’s tension appears to vary with time, the 
measured resonant frequency of the membrane can vary by up to 15% between the first and second 
measurements. Because of the membrane’s unstable properties, I decided to determine the resonant 
frequency directly from the input impedance measurements of the pipe-membrane system by 
curve-fitting. 

Experimental results of the input impedance measurements on the pipe-membrane system are 
shown in Figs. 4.11–4.13. The bore resonances are represented as minima in the input impedance 
curves, which are plotted in logarithm scale. These three curves are measured with different fm. For Fig. 
4.11, the value of fm is estimated as 2.7 kHz by fitting the impedance curve to the theoretical curve. The 
values of fm are estimated as 3.9 kHz and 4.6 kHz in Figs. 4.12 and 4.13, respectively. 
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Figure 4.11: Input impedance for an open pipe with a membrane on the hole in wall at its midpoint. 
Mass of the membrane m = 5×10-7 kg. Damping coefficient R = 6×10-4 sec-1kg. Resonant frequency fm 
= 2700 Hz. Comparison between the experimental data (．) and the theoretical curve (―). 

 

 
Figure 4.12: Input impedance for an open open pipe with a membrane on the hole in wall at its 
midpoint. Mass of the membrane m = 4.7×10-7 kg. Damping coefficient R = 1.2×10-3 sec-1kg. Resonant 
frequency fm = 3900 Hz. Comparison between the experimental data (．) and the theoretical curve 

(―). 
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Figure 4.13: Input impedance for an open pipe with a membrane on the hole in wall at its midpoint. 
Mass of the membrane m = 6×10-7 kg. Damping coefficient R = 2×10-3 sec-1kg. Resonant frequency fm 
= 4600 Hz. Comparison between the experimental data (．) and the theoretical curve (―). 

 
Resonance shifts and admittance reductions at odd-numbered resonances predicted by the piston 

model are demonstrated by these experimental results. The theoretical curves and the experimental 
data match pretty well at frequencies below fm. Above fm, resonance shifts are underestimated and 
admittance reductions at odd-numbered resonances are overestimated. The discrepancies between our 
model and experimental results demand further studies. However, the impedance curve at and above fm 
is not important for dizi sound production, as its tone range is always below fm. 

The agreement between the theoretical curves and experimental data is less perfect at the even 
numbered resonances. Below fm, admittance of the even-numbered resonances is underestimated, 
whereas it is overestimated above fm. Comparing Fig. 4.11 with Fig. 4.9, we observe that the 
membrane with fm = 2.7 kHz reduces impedance of the 6th bore resonance. This unexpected effect of 
the membrane on the even-numbered resonances – possibly of practice importance as this resonance 
lies in the dizi tone range – might stem from the excitation of the (11) mode of the membrane due to 
pressure gradient at a pressure node [Fig. 4.14(a)]. Experimental data suggest that below fm the (11) 
mode vibration seems to induce an in-phase flow wave, whereas it seems to induce an 
in-opposite-phase flow wave above fm [Fig. 4.14(b)]. However, it remains to be verified whether the 
(11) mode of the membrane plays a role in the frequency region around fm. 
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(a)                                                                                    (b) 
 
Figure 4.14: Effect of the (11) mode of the membrane on the even-numbered resonances of the pipe. (a) 
(11) mode of the membrane. (b) Air flow in the pipe induced by this mode. 

4.4.2 Impedance correlates of performance practice 

The impedance measurements on the membrane hole of the qudi in C are presented in Fig. 4.15, 
which gives the displacement response curve of the membrane coupled to the stopped dizi pipe. The 
resonant frequency of the membrane is estimated as 2.3 kHz by curve fitting. When it was measured 
after the impedance measurements with twelve fingerings of the dizi, however, it seemed to increase to 
3 Hz. Regarding the membrane’s instability, it should be noted that the impedance curves of all 
fingerings were not measured for the same state of the membrane. 

 
Figure 4.15: Displacement response curve at the membrane hole of the dizi. All holes except  the 
membrane hole were closed. The experimental data (．) and the theoretical curve (―) calculated by 
Eq. (4.22) are compared. The latter gives the theoretical response curve  (―．) of the membrane 
without coupling to a pipe. Membrane mass m = 1.6×10-6 kg. Damping coefficient R = 2.3×10-3 sec-1kg. 

Resonant frequency fm = 2.3 kHz. 

+ - air flow 
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Based on the input impedance measurements of the qudi in C, Fig. 4.16 displays the resonance 
shifts for dizi notes. As can be seen, most of the bore resonances of the dizi are lowered by the 
membrane. This successfully explains pitch decreases of dizi tones caused by the membrane. As 
expected, resonance shifts are especially significant for E5, F5, G5, B6 and C7. For these tones the 
membrane is located near a pressure antinode of the fundamental wave in the pipe. 

For the first and second octaves, resonance shifts does not exceed 20 Hz. But for dizi notes in the 
third octave (fifth register), whose fundamental frequencies are close to fm, resonance shifts become 
significant. But the corresponding pitch shifts do not exceed 60 cents. 

-1 0 0 -8 0 -6 0 -4 0 -2 0 0 2 0
F re q u e n c y  (H z )

● ○ ● ○ ○ ○  C 7

● ○ ● ● ● ●  B 6

● ● ○ ● ● ○  A 6

○ ● ● ● ● ●  G 6

○ ● ○ ● ○ ●  F 6

● ○ ○ ○ ○ ○  E 6

● ● ○ ○ ○ ○  D 6

● ● ● ○ ○ ○  C 6

● ● ● ● ○ ○  B 5

● ● ● ● ● ○  A 5

○ ● ● ● ● ●  G 5

○ ● ● ○ ● ●  F 5

● ○ ○ ○ ○ ○  E 5

● ● ○ ○ ○ ○  D 5

● ● ● ○ ○ ○  C 5

● ● ● ● ○ ○  B 4

● ● ● ● ● ○  A 4

● ● ● ● ● ●  G 4

 

Figure 4.16: Resonance shifts for dizi notes caused by the membrane. Except for the four notes in the 
fourth register (C6, D6, E6, F6), pitches are lowered by the membrane. 

 
The upward resonance shifts at C6, D6, E6 and F6 are not predicted by the piston model. As the 

membrane is approximately locate at the pressure node of the fundamental wave, these resonance 
shifts might be relevant to the effect of the membrane on the even-numbered bore resonances 
mentioned in section 4.4.1. However, the corresponding pitch shifts are small (< 10 cents). 

According to the impedance measurements, resonance shifts caused by the membrane can distort 
the scale of the dizi. Here I do not intend to compare it with the tuning systems used in Western music. 
Nevertheless, it is important to examine the most basic interval: the octave. Fig. 4.17 compares the 
octaves of dizi tones with and without membrane vibration. When the membrane hole was covered by 
a rigid material, input impedance measurements showed that all octaves were slightly larger than the 
perfect octave. This octave stretching is exaggerated by the membrane for all notes in the first and 
second octaves. 
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Figure 4.17: Strechted octaves in the dizi exceeding to the perfect octave calculated by input 
impedance measurements. Comparison between the membrane-less flute (□) and  the membrane flute 
(■). 

 
As can be noted in Fig. 4.17, the octave stretching is most significant for E5/E6 and F5/F6. E5 

and E6 are played with the same fingering ●○○○○○, but their interval is stretched to a perfect octave 
plus a semitone when the membrane is present. This effect can be explained in terms of the 
membrane’s location. As the membrane is located at a pressure antinode of the fundamental wave of 
E5, the corresponding bore resonance is shifted by the membrane. On the other hand, the membrane is 
located at a pressure node of the fundamental wave of E6 and the corresponding bore resonance is not 
affected by the membrane. Hence, the membrane results in an interval stretching for E5/E6. According 
to the impedance measurements, the membrane enlarged the interval of E5/E6 from 1259 cents to 
1309 cents. 

Although the impedance measurements show the octave-stretching effect, it should be noted that 
pitches of flue instruments are not solely determined by the minima of the impedance curve. Skillful 
players can adjust the intonation of the dizi by manipulating the embouchure. 

In practice, these stretched octaves do not lead to serious intonation problems, but can arise 
timbre problems in dizi tones with subharmonics (octave-multiphonics). As mentioned in section 3.4.3, 
upper notes of the third register can have widened spectral lines of subharmonics. Such dizi tones are 
produced with the excitement of the first and second modes of the pipe. Because the octave is stretched, 
the coexistence of the two notes (for instance, B4/B5 or C5/C6 in the qudi in C) will lead to 
spectral-line-widening for subharmonics.  This effect will be further discussed in section 6.4 

Next to resonance shifts, the membrane also affects impedance of resonances, which determine 
the playability of dizi notes. Fig. 4.18 shows the changes in impedance caused by the membrane. The 
membrane does not significantly affect the resonance impedance for most of the dizi notes. Only the 
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bore resonances supporting B6 and C7, whose fundamental frequencies fall close to fm, show large 
impedance changes. 
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Figure 4.18: Impedance changes of resonances corresponding to dizi notes caused by the membrane. 
Only the resonances of the two highest notes B6 and C7 show significant impedance increases. 

 
The input impedance curves for the two notes B6 and C7 are given in Figs. 4.19 and 4.20. 

Resonance shifts and impedance increases around 2 kHz are noticeable. As a high value of impedance 
implies a low playability of the dizi note, the impedance increases of resonance supporting B6 and C7 
successfully explain that these two high notes are impossible to play unless the membrane is very thick 
and taut. It should be noted in Fig. 4.18 that the impedance minimum at 2.5 kHz is shifted upward by 
the membrane, while the one at 2 kHz is shifted downward. This implies 2 kHz < fm < 2.5 kHz. It is 
consistent with the measurement of the membrane’s resonant frequency fm = 2.3 kHz shown in Fig. 
4.14. 

Finally, the input impedance measurements of the dizi with all finger-holes and end-holes closed 
are presented in Fig. 4.20. This special fingering avoided the cut off frequency by covering all the four 
end holes; the instrument becomes a simple open pipe. A resonance splitting at 2.7 kHz caused by the 
membrane can be observed. It recalls the wolf tone in bowed-string instruments. However, admittance 
at the two split resonances is too low for flute tone production and it will be even lower when the end 
holes are open. I therefore conclude that the wolf tone does not take place in the dizi. 



58 

 

 

 
Figure 4.19: Input impedance for B6 of the qudi in C. Fingering: ●○●●●●. Comparison between 
the measurements with (―) and without (- - -) the membrane vibration. The bore resonance 
corresponding to B6 is at 2026 Hz (marked with a grey triangle) when  the membrane is replaced by a 
rigid wall, while it is at 1951 Hz with the vibrating membrane (marked with a black triangle). 

 
Figure 4.20: Input impedance for C7 of the qudi in C. Fingering: ●○●○○○. Comparison between 
the measurements with (―) and without (- - -) the membrane vibration. The bore resonance 
corresponding to C7 is at 2129 Hz (marked with a grey triangle) when  the membrane is replaced by a 
rigid wall, while it is at 2048 Hz with the vibrating membrane (marked with a black triangle). 
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Figure 4.21. Input impedance for the dizi with all finger-holes and end holes closed. Comparison 
between the measurements with (―) and without (- - -) the membrane vibration. The membrane 
results in a resonance splitting at 2.7 kHz. 

 
According to the impedance measurements in this experiment, typical values of fm lie between 2 

kHz and 3 kHz for the qudi and the large dizi. This guarantees a characteristic bright timbre due to the 
large-amplitude vibration of the membrane. A low value of fm can be obtained by using a thin 
membrane and sealing it slackly on a larger membrane hole. On the other hand, for the bangdi, the 
Chinese piccolo, a higher value of fm is needed for producing high notes. With a high tension in the 
bangdi membrane, fm can be higher than 3 kHz. Some musicians suggest that the bangdi should be 
sealed by a thicker membrane (Jan 1991). This can be explained by Eqs. (4.13) and (4.14); because a 
larger mass of the dizi membrane reduces its coupling to the air column in the pipe, reductions in 
admittance of resonances can be moderated. However, when a bangdi membrane has a high value of fm, 
its vibration amplitude will be small in soft or low tones as the acoustic pressure driving the membrane 
is small. Therefore, soft or low tones of the bangdi tend to be poor in higher harmonics. 

The present experiments suggest that the membrane restricts the tone range of the qudi in C in 
two octaves plus two notes. Beyond this range, B6 and C7 are unplayable unless the membrane is very 
taut and thick. The membrane’s resonant frequency fm sets an upper limit of the dizi tone range through 
admittance reductions of the resonances supporting these two high notes, whose fundamental 
frequencies are close to fm. Admittance reductions of bore resonances stem from the pipe’s coupling to 
the membrane, whose damping is much larger than the wall lose in the pipe. 
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4.5 Conclusions 

The linear behavior of the dizi membrane is studied by modeling it as a piston attached to a linear 
spring. Impedance measurements gave typical values of parameters in the piston model: the 
membrane’s resonant frequency 2 kHz < fm < 3 kHz, the effective acoustic mass m of the order of 10-6 
kg, and the damping coefficient R of the order of 10–3 sec-1kg. 

In the experiment for a simple open pipe with a membrane hole at its midpoint, admittance 
reductions and resonance shifts at odd-numbered resonances in the frequency range below fm were 
quantitatively in agreement with impedance calculations based on the linear piston model. The 
even-numbered resonances around fm were also affected by the membrane. This unexpected result 
might be due to the excitation of the (11) vibration mode of the membrane. 

The impedance measurements of the qudi in C show that the membrane caused significant 
admittance reductions for the bore resonances supporting the two notes B6 and C7, and thus the dizi 
range is restricted to about two octaves plus two notes. Analogously to a string-soundboard system, the 
vibration modes of the pipe-membrane resonator of the dizi are largely damped by the membrane 
when the pipe’s resonances are near the membrane’s resonant frequency fm. As fm sets an upper limit of 
the tone range, the membrane of the bangdi tends to be sealed more tautly than that of the qudi for 
producing high notes. 
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Chapter 5.  

Non-linearity of the membrane: Wrinkling and 

performance practice 

Abstract 

The non-linear behavior and wrinkling of a dizi membrane, crucial for producing a “correct” dizi 
timbre, were studied theoretically and experimentally. Theoretically, a circular membrane with an 
isotropic initial tension behaves like a Duffing oscillator with a hardening spring (Chobotov and 
Binder 1964). In the case of the dizi membrane, its elastic property is complicated by wrinkling, 
which is produced by a uniaxial tensile strain. Theoretical study suggests that a wrinkled membrane 
has a higher initial tension (4N0) than a membrane with an isotropic initial tension (N0) for the same 
resonant frequency. Wrinkling reduces the cubic non-linearity of the membrane, avoiding a jump 
phenomenon in its response curve. 
The existence of the membrane’s non-linearity was demonstrated by driving it with sinusoidal 
acoustic waves strong enough to induce its harmonic generation. Relations between the magnitudes 
of the lowest three harmonics revealed a predominance of cubic non-linearity for an unwrinkled 
membrane, and a predominance of quadric non-linearity for a wrinkled membrane in an intensity 
range of the driving signals. The membrane’s response curves showed the frequency-pulling effect 
characteristic of a hardening spring. A jump phenomenon was observed in the multi-valued response 
curve of a slack, unwrinkled membrane. In an impedance calculation, the membrane with a 
large/small jump was approximated as a linear oscillator with a large/small damping coefficient. The 
large damping could lead to significant admittance reductions of the bore resonances supporting 
notes for which the membrane is located near a pressure antinode of the fundamental wave. 

5.1 Introduction 

In chapter 4 the input impedance of the dizi was measured by exciting the instrument with 
acoustic signals. As the signals used were much weaker than the acoustic waves in the dizi pipe during 
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a performance, the impedance measurements only revealed the linear behavior of the passive 
resonator of the dizi. The focus of this chapter turns to the membrane’s non-linearity, which is 
expected to explain the harmonic-rich sound of the dizi. If the dizi membrane’s behavior is non-linear 
in a typical playing range, it will transfer the acoustic energy in the pipe from lower frequencies to 
higher frequencies. The purpose of the present study is to demonstrate the existence of the 
membrane’s non-linearity using signals stronger than those in the previous impedance measurements. 
For the sake of simplicity, only the quadric non-linearity and cubic non-linearity are considered here. 

As the tension and wrinkles in a dizi membrane are essential to production of the characteristic 
dizi timbre (Thrasher 2001), their influences on the membrane’s non-linearity are of interest. It is 
known by dizi musicians that a very taut membrane cannot produce characteristic bright dizi tones. 
But if the membrane is too slack, the dizi will become difficult to control. It can be so unstable that it 
either does not sound, or sounds raucously under the same fingering. In other words, its persistent 
behavior appears to be sensitive to the initial condition – a common phenomenon in non-linear 
systems. In order to avoid these problems, musicians have to stretch the membrane carefully to 
produce a lot of lateral wrinkles and set an intermediate value of tension on them. The influences of 
the tension and wrinkles on the membrane’s linear and non-linear properties are studied theoretically 
and experimentally.  

The sources of the membrane’s non-linearity and the effects of wrinkles in it are discussed in 
section 5.2. Its non-linear behaviors corresponding to the cubic and quadric non-linearity are 
distinguished in section 5.3. The experimental methods are addressed in section 5.4 and the results are 
presented in section 5.5. Section 5.6 relates the jump phenomenon associated with the cubic 
non-linearity to performance practice of the dizi. 

5.2 Membrane’s non-linearity and wrinkles 

5.2.1 Unwrinkled membrane 

5.2.1.1 Source of cubic non-linearity 

In a non-linear piston model of a membrane, the involvement of cubic non-linearity corresponds 
to a hardening or a softening spring. A circular membrane with an isotropic tension was shown to 
have the property of a hardening spring. Chobotov and Binder (1964) derived the equations for 
rotationally symmetric motions, namely the (01) mode, of a circular membrane without damping, 
which was driven by acoustic signals. With the help of a perturbation procedure and the Ritz-Galerkin 
technique, the exact differential equations of the membrane can be written as an equivalent Duffing 
equation (see, e.g., Hagedorn 1995) 

 
032 =++ qqq m βω&& ,                                                      (5.1) 
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where q is the non-dimensional displacement of the membrane in (01) mode, 㰐m the membrane’s 
density (pro volume), hm its thickness and w0 its central displacement. N0 is the initial tension and 㯀 
its Poisson’s ratio. They are related to the initial strain (change in area per unit of original area) 㬰 and 

the Young’s modulus E by the equation 
 

0)1( NEh m µγ −= .                                                      (5.4) 

 
For most material the value of 㯀 is about 0.3. According to Eq. (5.3) the coefficient of cubic 

non-linearity 㬠 is positive, and hence the membrane has a hardening-spring characteristic. 

Furthermore, Chobotov and Binder (1964) assumed a linear damping, which was verified by the 
experiment for small and medium deflections of the membrane. 

The linear property of this membrane can be noted by Eq. (5.2), which gives the effective spring 
constant 

 
π06NKeff = .                                                                (5.5) 

 
On the other hand, Eq. (5.3) indicates that the non-linear stiffness decreases as the initial tension 

increases and the displacement decreases. 
 

2
0

1w−∝ γβ .                                                              (5.6) 

5.2.1.2 Source of quadratic non-linearity 

The quadratic non-linearity implies an asymmetry of the membrane’s potential energy between 
the upward and downward displacements. I propose that the global curvature of the membrane is 
responsible for this asymmetry. 

When a membrane is sealed on a hole in the wall of the cylindrical tube, it is more or less shaped 
like a saddle surface [Fig. 5.1(a)]. In the case that the two curvatures at the saddle point have the same 
magnitude, the membrane is approximately symmetric for both sides. In the case of a dizi membrane, 
the symmetry between the upward and downward vibrations is broken, as the curvature on the plane 
perpendicular to the dizi (the yz-plane) is approximately zero [Fig. 5.1(b)]. This is due to a vanishing 
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tension in the direction paralle to the dizi pipe (the y direction). 
Fig. 5.2 compares the upward and downward vibrations of a dizi membrane. For a pressure 

difference across the two sides of the membrane, it will deflect more when exerted by an upward force 
[Fig. 5.2(a)], and deflect less when exerted by a downward force [Fig. 5.2(b)]. This symmetry 
breaking is due to a larger area increase of the membrane for downward deflections. The quadratic 
non-linearity will vanish when the membrane is sealed on a hole in a flat wall instead of a cylindrical 
wall. 

  
 
 
 
 
 
 

 
 

Figure 5.1: Curved membrane sealed on a circular hole in the wall of a cylindrical tube. (a) 
Membrane shaped like a saddle surface. (b) Dizi membrane, which is usually sealed in a manner that 
its curvature in the plane perpendicular to the dizi pipe (yz-plane) is approximately zero. 

 
 

 
 
 

 
 

 
Figure 5.2: Comparisons between the static position (solid lines) and the deformed position (dashed 
lines) of a dizi membrane. (a) Upward vibration. (b) Downward vibration. 

5.2.2 Wrinkled membrane 

5.2.2.1 Energy balance in static wrinkling 

As mentioned in section 3.2, wrinkles in the dizi membrane play a crucial role in sound 
production. Wrinkles in the membrane are generated by imposing a stretching perpendicular to the 
dizi pipe and a compressive displacement parallel to the dizi pipe to the membrane [Fig. 5.3(a)]. They 
allow the membrane to vibrate in such a manner that the characteristic bright, sweet the dizi tones can 
be produced.  

y 
z 

x 

(a) (b) 

(a) (b) 
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(a)                                                                           (b) 

Figure 5.3: Wrinkles due to external forces and/or geometrical constraints. (a) Wrinkles in the dizi 
membrane, which are generated by imposing a stretching perpendicular to the dizi pipe and a 
compressive displacement parallel to the dizi pipe. (b) Wrinkles in a polyethylene sheet under a 
uniaxial tensile strain. 

 
The behavior of a wrinkled membrane is governed by a set of non-linear partial differential 

equations, known as Föppl-von Karman equations (Landau and Lifshitz 1986), which cannot be 
solved analytically. Cerla and Mahadevan (2003) recently made progress in the geometry and physics 
of static wrinkling using scaling and asymptotic arguments. They successful quantified the 
wavelength of wrinkling in a stretched elastic sheet due to external forces and/or geometrical 
constraints. It is worthy to mention their results here. 

Consider a stretched, slender elastic sheet of thickness hm, width 2W, length 2L made of a 
material with Youngs modulus E and Poisson’s ratio 㯀 under a stretching strain 㬰 in the y direction 
[Fig. 5.3(b)]. Assume that the out-of-plane displacement of the initially flat sheet is 㭠(x,y), where -W 

< x < W and -L < y < L. The bending energy Ub and the stretching energy Us are respectively 
dominated in the y and x directions: 
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where N0 is the tension and 㮠 is the bending stiffness, given by 
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As the sheet wrinkles in the x direction under the action of a small compressive stress, it satisfies 

 x  

y 



66 

 

 

the condition of inextensibility 
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where 㥀(y) is the imposed compressive displacement. 

The selection of the wavelength of wrinkling was shown to be determined by a compromise 
minimizing the bending energy and the stretching energy subject to the geometry constraint of 
inextensibility. The form of Ub in Eq. (5.7) makes it transparent that the total energy increases rapidly 
for short wavelength. On the other hand, the stretching energy also increases with long wavelengths 
due to the increase in the amplitude, which stems from the constraint of inextensibility Eq. (5.9). In 
either cases, the balance between the bending and stretching energies leads to the selection of 
wrinkles of an intermediate wavelength. 

5.2.2.2 Wrinkling correlates of cubic non-linearity 

Cerla and Mahadevan’s (2003) theoretical study on wrinkled sheets clamped on two sides 
provides insight into the dynamical behavior of a wrinkled dizi membrane, which is sealed on a 
circular hole. In the following discussion, the curvature of the dizi tube is ignored; the boundary of the 
dizi membrane is assumed to lie in the xy-plane. 

The predominance of the stretching energy in the y direction allows me to separate the two 
parameters x and y of the out-of-plane displacement of the dizi membrane; the membrane is divided 
into a series of strings parallel to the y-axis, as illustrated in Fig. 5.3(a). The motion of the wrinkled 
membrane can be described in terms of these strings, which are coupled together mainly by the 
bending energy in the x direction. If the thickness of the membrane hm is so small that the bending 
energy can be ignored, wrinkling can lead to a decoupling between these strings. Note that the 
geometrical constraint due to excess membrane along the x-axis allows the amplitude of wrinkling to 
adjust during vibration [Fig. 5.4(b)]. When the vibration amplitude is large enough, however, the 
wrinkling amplitude vanishes and the geometrical constraint Eq. (5.10) is no longer satisfied. In such 
situations, these strings are coupled together by a non-ignorable stretching energy in the x direction 
and the membrane shows a hardening spring characteristc. 

The effective spring constant of a wrinkled membrane in medium-amplitude vibrations can be 
calculated. Under a small pressure difference p across the two sides of a wrinkled membrane, these 
decoupled strings are parabolic curves because 
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(a)                                                                                  (b) 

Figure 5.4: Decoupling of vibrating strings in a wrinkled dizi membrane. (a) Dizi membrane divided 
into strings parallel to the y-axis. (b) Cross-section of the membrane in the xz-plane. The static 
position (thick line) is compared to small deformations (thin line) and large deformations (dashed 
line). Note that the wrinkling amplitude varies while the membrane is vibrating, so that the constraint 
of inextensibility Eq. (5.9) is satisfied and the strings are decoupled. For larger deformations, the 
wrinkling amplitude vanishes and these strings are coupled together by a stretching energy in the x 
direction. 

 
Here the geometry of wrinkles is ignored by assuming that the amplitude and wavelength of 

wrinkles are much smaller than the size of the membrane. For a uniform tension N0, it is reasonable to 
approximate the shape of an acoustically driven dizi membrane as 

 
))((),,( 222 xyattyx −−= ηζ .                                          (5.12) 

 
The effective spring constant Keff of a wrinkled dizi membrane stretched in the y direction with 

tension N0 can be obtained by equating its stretching energy to the effective potential energy Up of a 
piston, which is proportional to the square of the effective displacement of the membrane 㯠: 
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This potential energy must be equal to the stretching energy given by Eq. (5.7). This results in 
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Substituting Eq. (5.12) to Eq. (5.15) yields 

x 
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3 0πNKeff =                                                                  (5.17) 

 
This is the relation between the initial tension and the effective spring constant of the non-linear 

piston model of a circular membrane under a uniaxial tensile strain. Referring to Eq. (5.5) for the 
membrane with an isotropic tension, it can be found that to get the same effective spring constant, the 
membrane under a uniaxial tensile strain must has a tension considerably larger than that of the 
unwrinkled membrane with an isotropic tension. 

For the same spring constant or resonant frequency, a wrinkled dizi membrane under a uniaxial 
tensile strain has a cubic non-linearity lower than an unwrinkled membrane with an isotropic tension. 
First, a low initial strain in the unwrinkled membrane will lead to a large cubic non-linearity because 
its tension will significantly vary in large-amplitude vibrations; it is not fully stretched. This makes 
the effective spring of the membrane fairly hardened. Second, wrinkles largely reduce the coupling of 
the strings. Their behavior is fairly linear until the constraint of inextensibility Eq. (5.10) is no longer 
satisfied for large deformations and these strings are coupled by a stretching energy in the x direction. 

In summary, the main effect of wrinkles in the dizi membrane is to make it behave more linearly 
by reducing the cubic non-linearity. If the dizi membrane is unwrinkled due to an isotropic initial 
tension, the spring constant will be too high for a high initial strain so that the membrane hardly 
vibrates, or, the cubic non-linearity will be too high for a low initial strain. In the latter case, a jump 
phenomenon in the response curve of the membrane could occur in a typical playing range of the dizi. 
This will be borne out in the experiment. 

In the above discussion, the bending energy Ub given by Eq. (5.8) is ignored. For a thick 
membrane, Ub may play a role in the membrane’s vibration by softening the spring, because Ub 
reaches its maximum when the effective displacement of the membrane 㯠 is zero. Moreover, the 

changing amplitude of wrinkling during vibration is likely to be the main source of damping, which 
may be non-linear. Finally, the quadric non-linearity due to the membrane’s curvature in its static 
position could affect its vibration.  These complications are not taken into account in the present crude 
model of a wrinkled membrane. 
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5.3 Theory 

5.3.1 Cubic non-linearity and jump phenomenon 

At the neighborhood of the membrane’s static position, its restoring force can be expressed as a 
Taylor series: 

 
...)( 322

0 +++= βξαξξωmFrestorting .                                        (5.18) 

 
The first term represents the Hook’s law, while the second term corresponds to the quadric 

non-linearity and the third term corresponds to the cubic non-linearity. In the first approximation, 
only the first three terms are considered. If the restoring potential is symmetric, the first non-linear 
term in Eq. (5.18) is the cubic term. When the membrane is driven by a sinusoidal force, its motion 
equation is 
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If 㬠 is small, it is easy to demonstrate that the solution of the Duffing equation is of the 

following form: 
 

...)7cos()5cos()3cos(cos 7755331 +++++++= ϕωϕωϕωωξ tBtBtBtB ,          (5.20) 

 
where the coefficients are all real numbers. Substituting Eq. (5.20) to Eq. (5.19) and collecting terms 
of cos㲐t and sin㲐t give 
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The coefficients of cos㲐t and sin㲐t must vanish, so 
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Squaring both sides of the two equations and summing them give 
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The fundamental amplitude A1 can be expressed as a function of the driving frequency by 

solving Eq. (5.19). Response curves of softening and hardening spring systems with various 
magnitudes of the driving force are showed in Fig. 5.5(a)(b). For a softening spring system, the 
effective spring constant and the resonance decrease as the driving force magnitude increases, while 
they increase for a hardening spring system. This effect is sometimes called the frequency-pulling 
effect. When the force is large enough, the response curve can be multi-valued; A1 have three values, 
one is stable, one is meta-stable and one is unstable. In this frequency region, different histories of the 
motion lead to different persistent behaviors. If the forcing frequency varies gradually while keeping 
all the other parameters fixed, a jump phenomenon can be observed (see, e.g., Hagedorn 1995). 
Starting from small forcing frequency and slowly increasing, the response will suddenly exhibit a 
finite jump in amplitude and follow the upper path, as illustrated in Fig. 5.5(c). On the other hand, if 
we start with a large forcing frequency and gradually reducing, the response will again reach a critical 
state resulting in a sudden jump down to the small-amplitude solution, as illustrated in Fig. 5.5(d). 

 
 
 
 

 
 

 
 
 

 
 
 
 

 (c)                                                               (d) 
Figure 5.5: Frequency-pulling effect and jump phenomenon of a Duffing oscillator. (a) Response 
curves of a softening spring system under various driving magnitudes. (b) Response curves of a 
hardening spring system. (c) Response curve of a hardening spring system under an increasing 
driving frequency. (d) Response curve of a hardening spring under a decreasing driving frequency. 

5.3.2 Harmonic balance 

Considering both the cubic and quadric non-linearities, the membrane driven by a sinusoidal 
force has the equation of motion: 

(a)                                                              (b) 
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It can be rewritten as 
 

)(
2

0322
0

tjtj ee
m

Gr ωωβξαξξωξξ −+=++++ &&& .                                (5.26) 

 
In the following calculation, the solution of this form is considered: 
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Substituting Eq. (5.27) to Eq. (5.26) gives 
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Equating terms of various harmonics in the Fourier series yields a set of equations relating the 

series coefficients. In exact form, they are not amenable to simple calculation. This technique, 
sometimes called harmonics balance (see, e.g., Woodhouse 1995), is especially useful in 
small-amplitude vibrations. Therefore, 㯠(t) is assumed to be predominated by the fundamental and 

Bn decreases rapidly with n. In the following calculation, all Bn for n > 3 are neglected. 
Collecting the terms of e2j㲐t in Eq. (5.29) gives 
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Assuming 
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Eq. (5.30) becomes 
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Similarly, collecting the terms of e3j㲐t in Eq. (5.29) gives 
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According to Eq. (5.31), Eq. (5.34) becomes 
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5.3.3 Worman’s theorem 

Eqs. (5.33) and (5.35) are especially useful when the membrane’s non-linear property is 
predominated by either the quadric term or the cubic term. 

If 
2
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~~2 BB βα << , corresponding to the predominance of cubic non-linearity, Eq. (5.35) gives 
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Conversely, if 
2
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~~2 BB βα >> , corresponding to the predominance of quadric non-linearity, 

Eq. (5.35) gives 
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If 㬠 is so small that 
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Eq. (5.33) becomes 
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Combining with Eq. (5.37) yields 
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These relations between the magnitudes of the lowest three harmonics of the membrane’s 

displacement take the form of Worman’s (1971) theorem when quadric non-linearity predominates its 
behavior. Worman’s theorem states that when the vibration of the clarinet is small, the magnitude of 
the nth harmonic is proportional to the nth power of the magnitude of the fundamental: 
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In practice this effect is brought into play by increasing the blowing pressure a little above the 

threshold to make the note louder. The content of higher harmonics grows more significantly than 
lower harmonics. Although the sounding mechanism underlying the clarinet is very different from 
that of the dizi, a similar law is shown to govern their harmonic generation in small oscillations near 
the threshold. 

If cubic non-linearity predominates the membrane’s behavior, Eq. (5.36) also takes the form of 
Worman’s theorem. According to Eq. (5.33), the magnitude of the second harmonic is also 
approximately proportional to the square of the fundamental magnitude unless the driving frequency 
is very close to the fm/4. However, the second harmonics is much weaker than the third harmonics 
because the former is proportional to the coefficient of quadric non-linearity, which is assumed to be 
small. 

In summary, the predominance of cubic non-linearity of the membrane has two signatures. First, 
the magnitude of the third harmonic is proportional to the third power of the fundamental magnitude,. 
Second, the second harmonic is weaker than the third harmonic. On the other hand, the predominance 
of the quadric non-linearity is characterized by Eq. (5.40), which takes the form of Worman’s 
theorem, and the second harmonic is stronger than the third harmonic in oscillations near the 
threshold. If there is no such simple relation between the lowest three harmonics, neither quadric 
non-linearity nor cubic non-linearity predominates. 

5.4 Experimental study 

5.4.1 Experimental setup 

The purpose of this experiment is to demonstrate the existence of the dizi membrane’s 
non-linearity. As wrinkling in the membrane plays a crucial role in producing a “correct” dizi timbre, 
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this experiment was also dedicated to the influences of wrinkling on its non-linearity. The 
predominance of the quadric or cubic non-linearity was judged by comparing the amplitude of the 
lowest three harmonics. The response curves were measured to determine the sign of the cubic 
non-linearity and to estimate the resonant frequency of the membrane. 

Fig. 5.6 shows the general features of the experimental arrangement, which was designed to 
apply sufficiently intense sinusoidal signals to the membrane. The loudspeaker was a medium range 
dome type, 18 cm in diameter. It was mounted with a horn made of pottery, 17 cm in tallness and 6 
mm in thickness. The horn’s thickness was expected to reduce the wall vibration, which would likely 
evoked by loud sounds in the cavity and lead to errors in experiments. The inner wall of the horn was 
conically shaped. It is desirable to avoid strong resonances of the cavity. Strong resonances would 
introduce an unnecessary strong frequency dependence of the acoustic pressure at the mouth. A plate 
with a hole sealed by a membrane covered the opening of the horn and a microphone was placed 
above the membrane with a distance of approximately 1 cm. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.6: Experimental setup. 

5.4.2 Materials 

Sinusoidal signals were synthesized by a PC computer. First, two signals with a constant 
amplitude and the frequency monotonically increasing/decreasing from 2 kHz to 3 kHz were 
generated. They were calibrated by the acoustic pressure level measured at the mouth of the conic 
horn without the plate. After calibration, I obtained the input signals with approximately constant 
acoustic pressure for driving the membrane placed at the opening of the horn. Although this 
calibration was rather crude, the resonance of the membrane was expected to be strong enough to 
mask the errors due to amplitude fluctuations of the input signal while its frequency swept up/down. 

Second, a signal with a constant frequency 1350 Hz and monotonically increasing amplitude 
was generated. 

plate with a hole sealed 
by the membrane 

loudspeaker conic horn 

microphone 

 
 

PC 
Computer 
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5.4.3 Experimental procedure 

Two measurements were performed on four states of the membrane. In the first measurement, 
the membrane was driven by the calibrated signals with increasing/decreasing frequency. The 
magnitude of the input signal was modified four times. The sounds radiated by the membrane were 
recorded by the microphone above it. The magnitude of the fundamental was plotted along the 
frequency and the four response curves ware compared. Owing to the limitation of equipments, the 
sounds radiated by the membrane were recorded in an arbitrary unit. 

In the second measurement, the membrane was driven by a signal with a constant frequency 
1350 Hz and monotonically increasing amplitude. The sounds radiated by the membrane were 
decomposed into Fourier components. 

These two measurements were taken for four states of the membrane. The membrane was first 
sealed on a hole with a radius of 4 mm in a piece of cylindrically shaped plate. The cylinder has a 
radius of 30 mm. Then the same measurements were taken for the membrane sealed on a hole in a flat 
plate. This procedure was carried out for a wrinkled membrane and an unwrinkled membrane. 

Finally, it should be noted that the coefficients of the Fourier components of the sound radiated 
by the membrane are approximately proportional to the membrane’s acceleration: 
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This approximation is based on the assumption that the vibrating membrane is baffled in an 

infinite plane. Referring to Eq. (7.28) in [Fletcher and Rossing 1991] for such a sound source, the 
pressure dp produced by a small element of area dS at r' in a plane with velocity u(r') is 

 

dSrue
r

jrdp rrjk )(
2

)( 0 ′= ′−−

π
ωρ

.                                            (5.43) 

 
Assuming that the velocity u(r') is uniform at every points of the membrane (piston 

approximation) and the wavelength is much larger than the distance between the membrane and the 
microphone (kr ~ 0), the integral over the membrane gives 
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As it is in proportion to 㲐u for a sinusoidally vibrating membrane, the acoustic pressure 

recorded above the membrane is proportional to its acceleration. 
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5.5 Results and discussion 

5.5.1 Magnitudes of the lowest three harmonics 

Figs. 5.7 and 5.8 give the response curves (left) for signals with sweeping up/down frequency 
and the relations between the magnitudes of the lowest three harmonics (right) of the sounds radiated 
from the membrane. The behavior of the membrane sealed on a hole in the wall of a cylindrically 
shaped plate showed a predominance of quadratic non-linearity when it was wrinkled. As can be seen 
from Fig. 5.7(a-2), the amplitude of the second (third) harmonic was proportional to the second (third) 
power of the amplitude of the fundamental, and the second harmonic was stronger than the third 
harmonic. When the intensity of the driving signal became larger, however, the amplitude of the 
second and third harmonics deviated from Worman’s theorem. This can be explained by the Taylor 
expansion of the membrane’s stiffness; when its vibration amplitude is large enough, both quadric 
and cubic non-linearities contribute to the membrane’s dynamic behavior and there are no simple 
relations between the amplitudes of the lowest three harmonics. 

When the membrane sealed on the cylindrically shaped plate was unwrinkled, the third 
harmonic was always stronger than the second harmonic. When the intensity of the driving signal was 
large enough, the amplitude of the third harmonics was proportional to the third power of the 
amplitude of the fundamental [Fig. 5.7(b-2)]. This implies a predominance of cubic non-linearity in 
this range. When the intensity of the driving was small, however, the membrane’s harmonic 
generation did not obey Worman’s theorem. This can also be explained by the Taylor expansion of 
the membrane’s stiffness; when its vibration amplitude is small, the quadric term is non-negligible 
even when the coefficient of the quadric term is small. The cubic term does not yet predominate in 
small-amplitude vibrations and both quadric and cubic non-linearities contribute to the membrane’s 
dynamic behavior. In contrast to the wrinkled membrane, the quadric non-linearity never 
predominated the behavior of the unwrinkled membrane. 

The behavior of the membrane sealed on a flat plate was quite similar to that sealed on a curved 
plate. The wrinkled membrane showed a predominance of quadric non-linearity [Fig. 5.8(a-2)], 
whereas the unwrinkled membrane showed a predominance of cubic non-linearity [Fig. 5.8(b-2)]. 
Comparing Fig. 5.7(b-2) to Fig. 5.8(b-2) yields that the unwrinkled membrane sealed on a flat plate 
has a predominance of cubic non-linearity even when the intensity of the driving signal is small. This 
implies that the unwrinkled membrane sealed on a hole in a cylinder has a larger value of the quadric 
non-linearity. This supports that the membrane’s global curvatures break the symmetry between its 
upward and downward deformations (section 5.2.1.2). 

It should be noted that Worman’s theorem holds only for extreme values of the 
criterion 2

12
~~2 BB βα mentioned in section 5.3.2. When 1~~2

2

12 >>BB βα  the predominance of 

quadric non-linearity leads to 
2
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~~ BB ∝ and 3

13
~~ BB ∝ ; when 1~~2
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12 <<BB βα  the predominance 



77 

 

 

of cubic non-linearity leads to 
3

13
~~ BB ∝ . In the present study the values of the amplitude of 

membrane’s vibration, quadric non-linearity and cubic non-linearity were not obtained. The use of 
Worman’s theorem remains to be justified by quantitative experiments in the future. 

 
 

 
(a-1)                                                                            (a-2) 

 

 
(b-1)                                                                           (b-2) 

Figure 5.7: Response curves (left) and relations between the amplitudes of lowest three harmonics 
(right) of the sounds radiated from a membrane sealed on a hole in the wall of a cylindrical plate. In 
the response curves the plots marked with ‘┼ ＊ × ．’ are measurements for a increasing driving 
frequency, while those marked with ‘△ ◊ □ ○’  are measurements for a decreasing driving frequency. 
(a) Wrinkled membrane. (b) Unwrinkled membrane. 
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(a-1)                                                                            (a-2) 

 
(b-1)                                                                            (b-2) 

Figure 5.8: Response curves (left) and relations between the amplitudes of lowest three harmonics 
(right) of the sounds radiated from a membrane sealed on a hole in the wall of a flat plate. In the 
response curves the plots marked with ‘＊ × ．’ are measurements for a increasing driving frequency, 
while those marked with ‘◊ □ ○’ are measurements for a decreasing driving frequency. (a) Wrinkled 
membrane. (b) Unwrinkled membrane. 

5.5.2 Response curves 

The response curves of the membrane show the frequency-pulling effect characteristic of a 
hardening spring regardless of wrinkling [Fig. 5.7(a-1)(b-1), Fig. 5.8(a-1)(b-1)]. The maximum of the 
response curves tends to increase as the amplitude of the driving signal increased. For the membrane 
sealed on a hole in a flat plate, wrinkling largely reduced the frequency-pulling effect [Fig. 5.8(a-1)]. 
This supports that a wrinkled membrane has a lower value of cubic non-linearity than an unwrinkled 
membrane for the same resonant frequency. 

For the membrane sealed on a hole in the wall of a cylinder, however, the response curves are 
complicated by the involvement of the quadric non-linearity due to the membrane’s global curvatures. 
This might explain the zigzags in the response curve for the wrinkled membrane [Fig. 5.7(b-1)]. In 

2
12 AA ∝  

3
13 AA ∝  

3
13 AA ∝  



79 

 

 

such large-amplitude vibrations, the geometry constrain of inextensibility may be not satisfied and the 
non-linearity contribute to the dynamic behavior of the membrane is complicated. The irregular 
response curve of the wrinkled membrane sealed on a hole in the wall of a cylinder requires further 
investigations. 

Fig. 5.8(b-1) indicates that the membrane’s response changed rapidly at 2230 Hz for a strong 
driving signal. When I imposed a lower initial strain to this unwrinkled membrane, its cubic 
non-linearity became so large that its response curve showed a jump phenomenon (Fig. 5.9). Note that 
the signals used in the present experiment were much weaker than the acoustic waves in the dizi pipe 
in a typical playing range. Therefore, the jump phenomenon is likely to occur in a normal play 
condition when the dizi membrane is unwrinkled and slack. 

 

Figure 5.9: Jump phenomenon in the response curve of a slack, unwrinkled membrane under the 
driving frequency sweeping up (＊, ×) and down (□, ○). 

5.6 Jump phenomenon, wrinkling and performance practice 

From a physical point of view, one of the most interesting properties of the Duffing oscillator is 
the jump phenomenon. In the realm of music acoustics, a string has been proved to have a hardening 
spring characteristic. A jump phenomenon of an electromagnetically driven string was reported by 
Valette (1993). 

The jump phenomenon of the dizi membrane occurs when it is slack and unwrinkled so that its 
cubic non-linearity is large (Fig. 5.9). This phenomenon can be related to playability reductions for 
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the tones in the second and third registers. For the same fingering, the dizi either does not sound, or 
sounds raucously. Additionally, these tones have a strong tendency to jump to higher play modes, 
where the membrane is located near a pressure node of the fundamental. These phenomena can be 
explained in terms of the response curve of a Duffing oscillator. 

 
 
                                              

 
 
 
 
 
 
 

 (a)                                                                   (b) 
 
Figure 5.10: Q-factor reductions of the membrane’s resonance due to the jump phenomenon. (a) 
Small jump at a lower frequency. The Q-factor of the resonance is slightly smaller than that of a 
linear membrane. (b) Large jump at a higher frequency. The Q-factor of the resonance is significantly 
smaller than that of a linear membrane. 
 

 
 
 
 
 
 
 
 
 
 

(a)                                                                  (b) 
 
Figure 5.11: Approximations of the membrane’s resonance with a jump. (a) Small jump at a lower 
frequency. The resonance curve is approximated as that of a damped harmonic oscillator with a 
lower resonant frequency and a lower damping coefficient. (a) Large jump at a higher frequency. The 
resonance curve is approximated as that of a damped harmonic oscillator with a higher resonant 
frequency and a higher damping coefficient. 
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Owing to the jump phenomenon of the membrane, its resonance has different Q-factors 
corresponding to a decreasing or increasing drive frequency. When the drive frequency sweeps down, 
the resonance of a non-linear membrane has a Q-factor slightly lower than that of a linear membrane 
[Fig. 5.10(a)]. On the other hand, when the drive frequency sweeps up, the resonance of a non-linear 
membrane has a Q-factor much lower than that of a linear membrane [Fig. 5.10(b)]. As the Q-factor 
represents the damping coefficient of the membrane, a non-linear membrane can have different values 
of the effective damping coefficient. This considerably affects the input impedance curve of the dizi 
through the pipe-membrane coupling. 

With a slack, unwrinkled membrane, the dizi is difficult to play in the second and third registers, 
for which the membrane is located near a pressure antinode of the fundamental wave in the pipe. In 
the second register the dizi tends to jump from the first play mode to the second play mode; in the third 
register, the dizi tends to jump from the second play mode to the third play mode. This unstable 
behavior due to a slack, unwrinkled membrane can be explained in terms of the input impedance of 
the dizi. 

The exact expression of the response curve of a non-linear membrane can be obtained by solving 
Eq. (5.24). For the first approximation, instead, I use the form of a damped harmonic oscillator for 
impedance calculation. The jumps at low and high frequencies are associated with different resonant 
frequencies and damping coefficients, as shown in Fig. 5.11. The effective damping coefficient 
corresponding to a large jump [Fig. 5.11(b)] is larger than that corresponding to a small jump [Fig. 
5.11(a)]. Given the membrane’s resonant frequency, damping coefficient and mass, the input 
impedance of the dizi can be calculated (see section 4.2.2). In order to simulate the jump phenomenon 
of a dizi membrane, these parameters are chosen to mimic the membrane’s response curve shown in 
Fig. 5.9. The resonant frequency of the large jump is estimated as 100 Hz higher than that of a small 
jump, and the damping coefficient corresponding to a large jump is estimated as three times as that 
corresponding to a small jump. This estimation is based on the membrane’s large-amplitude 
vibrations in a typical playing range, in which the driving force is much larger than the signals used in 
the previous experiments. Consequently, the two jumps are separated in a distance larger than that 
showed in Fig. 5.9(a). This implies a large value of the effective damping coefficient corresponding to 
the jump at the higher frequency. 

The results of calculated input admittance curves of a dizi with a slack, unwrinkled membrane 
are given in Fig. 5.12. Fig. 5.12(a-1) shows the admittance curve of the dizi under the fingering ●○○

○○○ with a jump at a lower frequency [Fig. 5.11(a)], while Fig. 5.12(a-2) shows the admittance 
curve with a jump at a higher frequency [Fig. 5.11(b)]. Similarly, Figs. 5.12(b-1) and (b-2) show the 
two admittance curves of the dizi under the fingering ●●●●○○.  
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(a-1)                                                                         (a-2) 

 

 
(b-1)                                                                         (b-2) 

 
Figure 5.12: Examples of the theoretical admittance curves of the dizi and its membrane. 
Comparison between the pipe without membrane vibration (- - -), the pipe with membrane vibration 
(―) and the membrane’s acoustic admittance curve (― -). Mass of the membrane m = 1.4×10-6 kg. 

Radius of the pipe r0 = 8 mm. Radius of the membrane hole a = 4.5 mm. (a) Distance between the 
membrane and the mouth hole L1 = 90 mm and distance between the membrane and the first open 
finger hole L1 = 80 mm. These two parameters mimic the fingering ●○○○○○  of the qudi in C. (b) L1 
= 90 mm and L1 = 195 mm. They mimic the fingering ●●●●○○  of the qudi in C. (1) Damping 
coefficient R = 2×10-3 sec-1kg. Resonant frequency of the membrane fm = 2.1 kHz. These parameters 
mimic the jump phenomenon at the lower frequency [Fig. 5.11(a)]. (2) R = 6×10-3 sec-1kg. fm = 2.2 

kHz. These parameters mimic the jump phenomenon at the higher frequency [Fig. 5.11(b)]. 
Comparing the heights of the peaks in (a) and (b), we note reductions in playability of the first pipe 
mode under the fingering ●○○○○○ for a large jump. Similarly, the second mode under the fingering 
●●●●○○ is more difficult to be excited than the third mode for a large jump. 

 

Fingering: ●○○○○○ Fingering: ●○○○○○ 

Fingering: ●●●●○○ Fingering: ●●●●○○ 
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Figs. 5.12(a-1) and (a-2) show how the jump phenomenon of a slack, unwrinkled membrane 
reduces the playability of a dizi tone in the second register (fingering ●○○○○○), where the 
membrane is located at a pressure antinode of the fundamental wave. The dizi note in the first play 
mode (second register) is represented by the peak at 0.95 kHz, while the dizi tone in the second play 
mode (fourth register) is represented by the peak at 2 kHz. If the jump of the membrane’s response 
curve is at the lower frequency, the resonance at 0.95 kHz is more easily to excited, as its admittance 
is higher and that at 2 kHz [Fig. 5.12(a-1)]. But if the jump of the membrane’s response curve is at the 
higher frequency, a reduction in admittance of the resonance at 0.95 kHz will lead to a tendency to 
excite the resonance at 2 kHz, as their admittances are approximately the same [Fig. 5.12(a-2)]. 

For the dizi tones in the third register (second play mode), their playability reductions due to the 
jump phenomenon are even more significant. Figs. 5.12(b-1) and (b-2) compare the resonances for 
the second and third modes under the fingering ●●●●○○. For a jump of the membrane’s response 
curve at the lower frequency, the second mode is easier to be excited than the third mode [Fig. 
5.12(b-1)]. On the contrary, for a jump at the higher frequency, the third mode is easier to be excited, 
while the second mode cannot be excited because of a low admittance of the resonance [Fig. 
5.12(b-2)]. This explains the strong tendency of the dizi to jump from the second mode to third mode 
when the membrane is unwrinkled and slack. 

It is important to distinguish the playability reductions of the tones in the second and third 
registers due to the membrane’s jump phenomenon from those of the tones in the fifth register due to 
a low resonant frequency of the membrane (see chapter 4). The dizi tones in the second and third 
registers have fundamental frequencies much lower than the membrane’s resonant frequency. 
Consequently, the admittance reductions for these tones are unlikely to result from a low resonant 
frequency of the membrane. Instead, these admittance reductions stem from a high value of the 
effective damping coefficient associated with a jump phenomenon. 

The theoretical discussion cited above provides an explanation for the discontinuous behavior of 
the dizi with a slack, unwrinkled membrane. The multi-valued response curve of a slack, unwrinkled 
membrane implies that for a driving frequency in this range, the membrane has a stable state and a 
meta-stable state. Its behavior is sensitive to its history, thus leading to a hysteresis of the dizi. 
Wrinkling largely stabilizes dizi sound production and avoids the jump phenomenon through 
reduction in cubic non-linearity.  

The prediction of different admittance curves of the dizi for sweeping up/down driving signals 
shown in Fig. 5.12 should be tested in future experiments. Such impedance measurements on the dizi 
require a technique using intense sweeping frequencies as input signals. 

5.7 Conclusions 

The existence of membrane’s non-linearity of the lowest two orders was demonstrated by 
driving it with sinusoidal acoustic signals with an increasing intensity or a sweeping frequency. The 
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predominance of cubic or quadric non-linearity was observed under different conditions of the 
membrane with a resonant frequency in the range of 2–3 kHz. The behavior of an unwrinkled 
membrane is predominated by cubic non-linearity, whereas a wrinkled membrane showed a 
predominance of quadric non-linearity in an intensity range of the input signal. This supports that 
wrinkling reduces the membrane’s cubic non-linearity. When the membrane is slack and unwrinkled, 
its non-linearity is large enough to result in a jump phenomenon in its response curve. 

Impedance calculations explain the low playability of the dizi tones in the second and third 
registers in terms of the jump phenomenon. The membrane with a large jump in its response curve is 
approximated as a linear oscillator with a large damping coefficient. This damping reduces the 
admittances of the bore resonances supporting notes in the second and third registers, so the dizi tends 
to jump to higher resonances with higher admittances. 
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Chapter 6.  

Spectral features of dizi tones and the membrane’s 

cubic non-linearity 

Abstract 

The dizi membrane is modeled as a Duffing oscillator driven by the acoustic waves in the tube. This 
model aims to explain three major spectral features of dizi tones: (1) formants, (2) the predominance 
of odd-numbered harmonics, and (3) the subharmonics at high frequencies. It was tested by two 
kinds of quasi-sinusoidal tones driving the membrane: tones generated by external excitation or by 
blowing the instrument. For external excitation, the phase plots of the membrane show interlocking 
spirals, which are predicted by the quasi-sinusoidally driven Duffing oscillator model. For normal 
dizi tones, the agreement is restricted to frequencies < 10 kHz. In principle, the first formant, the 
odd-numbered harmonics predominance, and subharmonics at high frequencies are successfully 
explained by the membrane’s cubic non-linearity. 
Rich harmonics above 10 kHz radiated by the membrane, not predicted by our model, may be 
associated with the jet’s sensitivity to the harmonics in the range 3–5 kHz generated by the 
membrane. If the jet amplifies these harmonics in the pipe, they may in turn drive the membrane to 
radiate harmonics above 10 kHz. Two mechanisms relevant to the jet’s sensitivity to these 
harmonics are proposed: the moving separating points of the jet, and its varicose oscillations due to 
the pressure fluctuations at the flue exit. While these two effects are difficult to demonstrate 
experimentally, the second formant frequency can be explained by the filtering effect of the lowest 
transverse pipe mode with the resonance estimated as c/2D (D is the pipe’s diameter). 

6.1 Introduction 

In chapter 5, the existence of cubic and quadric non-linearities of the dizi membrane was 
demonstrated. The goal of this chapter is to explain the characteristic dizi timbre in terms of the 
membrane’s cubic non-linearity. A Duffing oscillator model of membrane is proposed to account for 
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three major spectral features of dizi tones: formants, the odd-numbered harmonics predominance, 
and subharmonics at high frequencies. 

Before taking the membrane into consideration, it is helpful to review the physical modeling of 
flue instruments. The geometry of a typical recorder-like instrument is illustrated in Fig. 6.1. A 
steady pressure supply in the foot of the pipe generates an air flow blowing through a narrow 
windway or flue. At the flue exit, a free jet is formed by flow separation. This jet flows across the 
mouth of the instrument and is directed toward a sharp edge called the labium. The jet is submitted to 
the transverse acoustic flow due to the air column’s oscillation in the pipe. The jet is sensitive to these 
perturbations because of its intrinsic instability. As the jet travels toward the labium, these 
perturbations are amplified. This results in a flipping of the jet on each side of the labium at the same 
frequency of the acoustic field. This jet motion sustains the air column’s oscillation. 

 
 

 
 
 
 
 
 

 
 
Figure 6.1: Geometry of a recorder-like flue instrument.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6.2: A simplified description of a flue instrument in a lumped model. 
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The functioning of recorder-like instruments is usually represented by a feedback loop 
composed of several elements: the jet instability is the amplifier; the pipe is an acoustic linear filter; 
and the jet-labium interaction is the sound source. Fig. 6.2 presents a simplified description of the 
feedback loop in a flue instrument (Fabre et al. 2000). The elements of this loop could first be 
isolated from the system for specific study, and then lumped together. This is a basic assumption of 
lumped models of flue instruments. 

The role of the membrane in the dizi is comparable with the violin body, because it serves as the 
secondary resonator and the two-dimensional radiator of the instrument. Similarities between the dizi 
and the violin can be found in their elements. When a wind instrument or a bowed string instrument is 
played, most energy is preserved as standing waves in the linear, one-dimensional resonator: the air 
column in the dizi, and the strings of the violin. The oscillation of the one-dimensional resonator is 
sustained by the source: aerodynamics at the mouth hole of the dizi, and the Helmholtz motion of the 
violin strings. The source is clearly separated from the two-dimensional radiator: the membrane of 
the dizi, and the body of the violin. The one-dimensional resonator allows the source and the radiator 
to couple together, establishing a feedback loop. Only a limited amount of the energy preserved in the 
one-dimensional resonator is transferred to the two-dimensional radiator. The above analogue is 
summarized in Tab. 6.1. 

 

 Violin Dizi 

Energy supply Quasi-steady bow velocity Quasi-steady jet velocity 

Source Bow-string interaction Aerodynamics at the mouth hole 

1-dimensional resonator Strings Air column 

2-dimensional resonator 
and radiator 

Soundboard Membrane 

Table 6.1: Functions of mechanical elements of the dizi and the violin. 

 
Because the one-dimensional resonator of a musical instrument always has poor radiation 

efficiency, the two-dimensional resonator coupled to it always serves as the main radiator. In a 
membrane-less flute, the lumped air at the mouth hole and open finger-holes serves as the major 
radiators. However, there is no obvious separation between radiator, source and resonator at the 
mouth hole. This makes the physics of flue instruments much more intricate than that of the violin, 
whose body can be regarded as an independent element taking care of radiation. This basic difficulty 
of lumped models of flue instruments has been pointed out in a recent review (Fabre et al. 2000): 
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It is a paradox that a flue instrument can be analyzed as a lumped system in a similar way to a 

violin, since there is no obvious separation between source, resonator and radiator. The key of this 

enigma is that the various flow phenomena involved correspond to different length and time scales, for 

which different approximations to the Navier-Stokes equations apply. But this is only true if we limit 

our discussion to low frequencies, corresponding to the fundamental and its first harmonics. Under such 

hypothesis, the sound production is limited to a region with a size of the order of the mouth, which is 

typically a fraction (10-2) of the acoustic wavelength of the standing waves in the resonator. 

Furthermore, radiation at low frequencies is almost negligible. The radiation acoustic field is dominated 

by the lowest frequency components.[...]  

It is a striking aspect of the literature that most of the models are based on an intuitive approach in 

which approximations are not clearly defined. The discussion in the frame of lumped models often 

focuses on second order terms from a model which is at most accurate in the first order approximation. 

 
The mechanics of flue instruments is governed by a set of non-linear equations: the 

Navier-Stokes equations. As a general exact solution of the Navier-Stokes equations is not available, 
solutions are built up out of approximations. These approximations are only valid in a restricted 
region of the flow. A global solution is obtained by “gluing” these local solutions together. At the 
mouth hole, the resonator, source and the radiation field are dominated by different frequency ranges. 
In order to describe various flow phenomena involved at the mouth hole, different approximations 
corresponding to different length and time scales should be considered with caution. This makes 
physical study on flue instruments rather challenging. For instance, only very limited results about 
the harmonic generation of flue instruments are available (Fletcher and Douglas 1980, Verge et al. 
1997, Dequand 2000). 

A lumped model of flue instruments is dramatically changed by the presence of a membrane. In 
a membrane-flute, the membrane is clearly separated from the source and the one-dimensional 
resonator. Although the membrane introduces complications to this system, this separation makes 
some simple approximations possible. For example, the harmonics generated at the mouth hole 
become ignorable in comparison to those generated by the non-linear membrane. Therefore, the 
difficult problem of harmonic generation can be accounted for by describing the motion of a forced 
non-linear oscillator, the dizi membrane. The membrane’s stiffness is inherently non-linear even for 
soft dizi tones. This non-linear oscillator, able to transfer energy from lower frequencies to higher 
frequencies, serves as the main radiator for high frequencies. 

The present research on non-linear mechanisms of the dizi is split into two parts. In the first part 
the membrane’s behavior under a quasi-sinusoidal force is studied. This part begins by distinguishing 
between the radiation fields near the mouth hole and the membrane in section 6.2. Then, the 
membrane is modeled as a Duffing oscillator driven by a quasi-sinusoidal force for the dizi tones in 
the second and third registers. Section 6.3 addresses the experimental and numerical methods.  The 
results are compared and discussed in section 6.4. A general explanation of spectral features of dizi 
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tones in five registers is provided in section 6.5. In the second part, the aerodynamics at the mouth 
hole is taken into account. Section 6.6 begins with a review of the drive mechanisms of flue 
instruments. Possible interactions between the membrane and the jet are discussed. The second 
formant of dizi tones is related to the filtering effect of pipe’s transverse modes. 

6.2 Spectral features of dizi tones 

6.2.1 Tones radiated from the membrane and the mouth hole 

In the experimental study described in chapter 5, acoustic signals were applied to the dizi 
membrane to demonstrate its lower-order non-linearity. These signals generated by a speaker were 
much weaker than the acoustic pressure waves in the pipe of a dizi during a performance. In a typical 
playing range, the acoustic pressure in the pipe is of the order of 102 Pa, which are always dominated 
by the fundamental wave. The period of its vibration is the same as the driving force, but the 
waveform is distorted and rich harmonics are generated. This implies that the radiation acoustic field 
near the membrane is predominated by high frequencies, while the radiation acoustic field near the 
mouth hole is predominated by the fundamental. The dizi tone reaching listeners is a combination of 
these radiations. 

Fig. 6.1 compares three dizi tones played under approximately the same condition (fingering 
and embouchure), but recorded at different positions. Fig. 6.1(a) presents the spectrum of a dizi tone 
in the second register recorded in the front of the instrument. It has a dominant fundamental and a 
formant centered at 4 kHz. Amplitude differences between odd-numbered and even-numbered 
harmonics characteristic of this register appear only around the first formant. This spectrum can 
easily be explained in terms of the spectra of the two tones recorded near the mouth hole and the 
membrane. The tone radiated by the membrane shows significant amplitude differences between 
odd-numbered and even-numbered harmonics around and below the first formant [Fig. 6.1(b)]. At 
low frequencies, however, this characteristics is masked by the tone radiated from the mouth hole 
[Fig. 6.1(c)], whose lowest five harmonics do not show significant amplitude differences between 
odd-numbered and even-numbered harmonics. In addition, it is noteworthy that this tone has a 
formant centered at 10 kHz, where turbulence noises also accumulate. 
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(a) 

 
 

 
(b)                                                                          (c) 

Figure 6.3: Spectra of tones produced by a large dizi in G with the fingering ○○○○○○○. (a) Tone 
recorded 30 cm in front of the player. (b) Tone recorded 1 cm above the membrane. (c) Tone 
recorded 2 cm above the mouth hole. 

 

6.2.2 Dizi tones in the second and third registers 

The following study accounts for the dizi tones in the second and third registers. The choice of 
these two registers was aimed to explain the three spectral characteristics of the dizi tones: (1) the two 
formants, (2) the predominance of odd-numbered harmonics, and (3) subharmonics at high 
frequencies. The first two characteristics appear in the dizi tones in the second and third registers, 
while the last one appears in the dizi tones in the third register. 

In section 5.3, the deriving of the relation between the lowest three harmonics generated by a 
non-linear oscillator is restricted to the frequency-domain. This method of harmonic balance is 
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mainly applied to small- and medium-amplitude oscillations. To explore the membrane’s behavior in 
large-amplitude oscillations, the time-domain approach is more suited than the frequency-domain 
approach. 

In the time-domain, numerical simulations of the membrane’s motion are performed by 
modeling it as a Duffing oscillator driven by a quasi-sinusoidal force. The membrane’s equation of 
motion is 
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As the force terms corresponding to the second harmonic and the first subharmonic are assumed 

to be much smaller than that corresponding to the fundamental, the force driving the membrane is 
quasi-sinusoidal. 

 
 
 

 
 
 
 

 
 
 
 

 
 
Figure 6.4: Acoustic pressure waves in the dizi for a tone in the third register. (a) Fundamental wave 
corresponding to the excitement of the second mode. (b) Second harmonic wave. The membrane is 
located near a pressure node of its acoustic wave. (c) Subharmonic wave corresponding to the 
excitement of the first mode. 

 
Eq. (6.1) is available for simulating the dizi tones in the second and third registers. For the dizi 

tones in the third register, it is assumed that G1/G0 = o(10-1) and G2/G0 = o(10-1). The relatively small 
amplitude of the force term corresponding to the second harmonic is due to the membrane’s location. 
In the second and third registers, the membrane is located near a pressure antinode of the 
fundamental acoustic wave [Fig. 6.4(a)], and a node of the second harmonic wave [Fig. 6.4(b)]. 

Membrane 

(a) 

(b) 

(c) 
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Therefore, if these dizi tones are produced by a normal embouchure, for which the jet vibration is 
approximately symmetric, the acoustic pressure under the membrane is dominated by the 
fundamental. On the other hand, for the dizi tones in the first register the acoustic pressure of the 
second harmonic has larger amplitudes at the membrane’s position; G1 ~ G2. So the driving force is 
no longer quasi-sinusoidal and the spectrum shows no predominance of odd-numbered harmonics. 
The predominance of odd-numbered harmonics in the dizi tones in the second and third registers 
supports that the non-linear behavior of the membrane is predominated by the cubic non-linearity. 

The subharmonic force term in Eq. (6.1) stem from the possible excitement of the first mode of 
the air column when the dizi is played in the second mode. The coexistence of the first and second 
modes results in multi-phonic flute tones, and weak subharmonic components with frequencies 
(2n-1)f0/2 can be observed in the spectrum. In the simulations, only the contribution of the first 
subharmonic is considered, as it is presumed that the acoustic field in the pipe is predominated by low 
frequencies. 

The subharmonic generation of a membrane-less flute differs from that of a membrane flute. 
Two flute tones with subharmonics are compared in Fig. 6.5. A membrane-less flute can generate the 
first, second and third subharmonics, while a membrane flute can generate upper subharmonics. At 
high frequencies, these subhamonics are comparable to the flanking harmonics in magnitude. 

 

 
(a)                                                                               (b) 

Figure 6.5: Comparison of the subharmonic generation of a membrane-less and a membrane flute in 
the second mode. Sounds were produced by the large dizi in G with the fingering ●●●○○○○. (a) 
Dizi tone spectrum for a membrane covered by the palm of a hand. (b) Dizi tone spectrum for a 
vibrating membrane. 

 
In this section, the presence of upper subharmonics of a dizi tones in the third register (second 

mode) is expected to explain by numerical simulations with G2 > 0 in Eq. (6.1). For simulating the 
dizi tones in the second register (in the first play mode), it is assumed that G2 = 0 because no lower 
mode of the pipe can be excited. 

Although both the quadric and cubic non-linearities of the membrane were demonstrated in 
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chapter 5, only the cubic term is considered in Eq. (6.1). From a theoretical view, the ignorance of 
quadric non-linearity is due to the large amplitude of the membrane’s vibration [see Eq. (5.8)]. 

The ignorance of the quadric non-linearity is supported by the predominance of odd-numbered 
harmonics for the dizi tones in the second and third registers, for which the membrane is located near 
a pressure node of the second harmonic. When the membrane is driven by a sinusoidal force, the 
cubic non-linearity only generates odd-numbered harmonics, while the quadric non-linearity 
generates both odd- and even-numbered harmonics. The predominance of odd-numbered harmonics 
in the dizi tones in the second and third registers leads to a quasi-sinusoidally driven Duffing 
oscillator of the membrane. 

6.3 Methods 

6.3.1 Experimental study 

6.3.1.1 Part one: Harmonic generation 

The first part of the experiment is dedicated to the membrane’s harmonic generation for the dizi 
tone in the second register. Fig. 6.6(a) shows the general features of the experimental arrangement. In 
order to measure the sounds radiated by the membrane, a microphone was placed approximately 1 
cm above the membrane. A box enclosed the membrane so as to insulate the microphone from 
sounds radiated at the embouchure hole, finger holes and from the environment. The instrument used 
was a large dizi in G and the fingering is ●●○○○○○. Its physical dimensions are presented in Fig. 
6.6(b). 

Two kinds of tones driving the membrane were produced and recorded: dizi tones produced by 
blowing the instrument and tones produced by singing into the dizi. Singing into the dizi is an 
innovative performance technique of the dizi. In this experiment, this technique was used with 
falsetto voices to provide an alternative quasi-sinusoidal sound source with a similar fundamental 
frequency of the dizi tones in the second register. 

There are two reasons to use singing voices for driving the membrane. First, singing into the dizi 
can produce acoustic waves in the pipe whose intensity is smaller than pianissimo dizi tones. In 
chapters 4 and 5, the intensity of signals applied to the dizi is much weaker than the acoustic waves in 
the dizi pipe in normal playing states. For exploring the non-linear behavior of the membrane driven 
by signals with various intensities, singing into the dizi can provide a transition from weak signals 
generated by speakers to strong signals generated by blowing the instrument. Second, producing 
tones by singing into the dizi can avoid the complicated aerodynamics at the mouth involved in dizi 
sounding. Harmonics produced by the membrane may affect the jet motion at the mouth. On the 
other hand, for tones produced by singing into the dizi, it is presumed that the effect of the high 
harmonics to the glottis is negligible. Falsetto was used for singing into the dizi because it produces 
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weaker harmonics than the modal register. Hence, the glottis can be approximated as a source of 
quasi-sinusoidal tones. When tones were produced by singing into the dizi, the mouth hole was 
completely covered by the lips. So the dizi combined with the vocal tract and an open-close tube was 
formed, as illustrated in Fig. 6.6(c) with a simplified geometry. 

 
 
 
 
 
 
 
 
 
 

(a) 
 
 

 

 

 

(b) 

 
 
 
 

 

(c) 

Figure 6.6: Experimental setup for membrane’s  harmonic generation. (a) Experimental setup. (b) 
Fundamental acoustic pressure waves in the large dizi in G for the tones in the second registers. 
Fingering ●●○○○○○. (c) Fundamental acoustic pressure waves in the large dizi in G induced by 
singing into the dizi. Fingering ●●○○○○○. A vocal-tract-dizi tube is formed by covering the mouth 
hole with lips. In this figure the irregular shape of the vocal tract is approximated as a cylinder with 
the same diameter of the dizi. 

lips (mouth hole) membrane third finger hole glottis 
Lips 

18.7 cm 11.9 cm 

1.8 cm 

mouth hole membrane third finger hole 

vocal tract 

singing or blowing 

 
acoustic pressure  
(acceleration of the membrane) 
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As the tones produced by singing into the dizi are limited in intensity, real dizi tones produced 

by blowing must be used to induce larger-amplitude vibrations of the membrane. It should be noted 
that although the dizi tones could reveal the membrane’s behavior under strong forcing, the 
non-linear aerodynamics at the mouth could interact with the membrane through upper harmonics 
propagating in the pipe. This makes the right-hand side of Eq. (6.1) unrealistic and introduces 
complications that are beyond the considerations of the present simple model. 

The acoustic pressure waves recorded 1 cm above the membrane is approximately in proportion 
to the acceleration of the membrane (see section 5.4.3). They were integrated twice to give the 
membrane’s displacement. The initial velocity was chosen to give a quasi-periodic displacement of 
the membrane. 

6.3.1.2 Part two: Subharmonic generation 

The second part of the experiment was dedicated to the membrane’s subharmonic generation 
for the dizi tones in the third register (second play mode). The instruments used were a large dizi in G 
with the fingering ●●●●●●○, and a qudi in D with the fingering ●●●○○○. Their physical 
dimensions are presented in Fig. 6.7. 

 
 

 

 

 

(a) 
 
 

 

 

(b) 
 
Figure 6.7: Experimental setup for membrane’s  subharmonic generation. Comparison between the 
fundamental (─) and the first subharmonic (––) acoustic pressure waves. (a) Dizi tone in the third 
register of the large dizi in G. Fingering ●●●●●●○. (a) Dizi tone in the third register of the qudi in 
D. Fingering ●●●○○○. 

 
Although singing into the dizi can avoid the involvement of the aerodynamics at the mouth hole, 

it cannot be used for exploring the membrane’s subharmonic generation. Subharmonics generated by 

28.9 cm 11.9 cm 

15.5 cm 8.5 cm 

1.7 cm 

1.8 cm 
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singing are difficult to control and not restricted to low frequencies. This makes the right-hand side of 
Eq. (6.1) unrealistic in describing the signals produced by voices with subharmonics. Consequently, 
the membrane’s subharmonic generation was studied with the real dizi tones in the third register. 

Two instruments and two fingerings were used for producing different subharmonics: the large 
dizi in G with the fingering ●●●●●●○ and the qudi in D with the fingering ●●●○○○. The latter 
can produce subharmonics whose spectral lines are widened (see sections 3.4 and 4.4). It is suggested 
in section 4.4 that this spectral lines widening may stem from the stretched octave; the resonance 
frequency of the first mode of the pipe deviates from f0/2 (f0 is the resonance frequency of the second 
mode). 

6.3.2 Numerical study 

In numerical simulations, the terms in Eq. (6.1) is discretized in time with a forward Euler 
method using time step 㥀t. This results in 
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This value of 㥀t had been demonstrated to be small enough to give smooth and periodic phase 

plots of the membrane. The values of the effective acoustic mass m, the damping coefficient r = R/m 
and the angular resonant frequency 㲐m of the membrane were chosen to fit the response curve of the 

membrane measured in the impedance experiments (chapter 4). The cubic non-linearity, the 
magnitudes and the phases in the forcing terms were determined by to fit the experimental results. 
The initial velocity is chosen to give a quasi-periodic displacement 㯠n. It should be noted that 

although the numerical approach aims to explain the spectral features of dizi tones, the experimental 
results and the numerical results are primarily compared in the time-domain. The waveforms of 
sounds radiated by the membrane and the membrane’s phase plots are expected to reveal the 
performance of the model. 
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6.4 Comparisons between numerical and experimental results 

6.4.1 Harmonic generation 

All simulations of Eq. (6.1) were performed with the membrane’s damping coefficient r = 1700 
sec-1, resonant frequency 㲐m/2㰀 = fm = 2500 Hz, effective acoustic mass m = 5×10-7 kg. By fitting 
the experimental results, the coefficient of cubic non-linearity was estimated as 㬠 = 1017m-2sec-2. 

Figs. 6.8 to 6.12 show the five acoustic waves in the dizi. Three of them were produced by 
singing into the dizi, while the other two large-amplitude waves were produced by playing the 
instrument. As the microphone cannot measure absolute values of the acoustic pressure, the 
experimental results of the membrane’s displacement, velocity and acceleration are plotted in 
arbitrary unit. In the numerical results, they are plotted in MKS system. The displacement of the 
membrane is of the order of 10–5 m. Fitting the experimental results yields values of G0 in Eq. (6.1). 
The acoustic pressure driving the membrane G0/Sm increased from 50 Pa to 150 Pa (Figs. 6.8–6.12). 
These values of acoustic pressure in the dizi are in agreement with previous measurements of the 
acoustic pressure in flue instruments (e.g., Ségoufin et al. 2000, Verge et al. 1997, Verge et al. 1994). 

The experimental results of tones produced by singing into the dizi are successfully simulated 
by a quasi-sinusoidally forced Duffing oscillator (Figs. 6.8–6.10). The membrane’s phase plots show 
increasing interlocking spirals, corresponding to the increasing fluctuations at the two extremes of 
the membrane’s displacement waveforms. The fact that the center frequency of the first formant of 
the dizi tones increases with the tone intensity is also successfully predicted by the simulations of this 
model. 
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Figure 6.8: Comparison between the tone radiated by the membrane produced by singing into the 
dizi (left) and numerical results (right). Stimulation of Eq. (6.1) with G0 = 4×10-3m．sec-2, G1 = .02G0 , 
G2 = 0, 㲐/2㰀= 490Hz, 㱠0 =㱠2 = 0, 㱠1 = 1. (a) Tone radiated from the membrane. (b) 

Displacement. (c) Phase plots. (d) Spectra of (a). 

(a-1) (a-2) 

(b-1) (b-2) 

(c-1) (c-2) 

(d-1) (d-2) 
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Figure 6.9: Comparison between the tone radiated by the membrane produced by singing into the 
dizi (left) and numerical results (right). Stimulation of Eq. (6.1) with G0 = 5.75×10-3m．sec-2, G1 

= .03G0, G2 = 0, 㲐/2㰀= 498Hz, 㱠0=㱠2= 0, 㱠1 = 1. (a) Tone radiated from the membrane. (b) 

Displacement. (c) Phase plots. (d) Spectra of (a). 
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(c-1) (c-2) 

(d-1) (d-2) 
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Figure 6.10: Comparison between the tone radiated by the membrane produced by singing into the 
dizi (left) and numerical results (right). Stimulation of Eq. (6.1) with G0 = 6.65×10-3m．sec-2, G1 

= .03G0, G2 = 0,  㲐/2㰀= 500Hz, 㱠0 =㱠2 = 0, 㱠1 = 1. (a) Tone radiated from the membrane. (b) 

Displacement. (c) Phase plots. (d) Spectra of (a). 
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Figure 6.11: Comparison between the tone radiated by the membrane produced by playing the dizi 
(left) and numerical results (right). Stimulation of Eq. (6.1) with G0 = 8×10-3m．sec-2, G1 = .02G0, G2 

= 0, 㲐/2㰀= 424Hz, 㱠0 =㱠2 = 0, 㱠1=1. (a) Tone radiated from the membrane. (b) Displacement. (c) 

Phase plots. (d) Spectra of (a). 
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Figure 6.12: Comparison between the tone radiated by the membrane produced by playing the dizi 
(left) and numerical results (right). Stimulation of Eq. (6.1) with G0 = 1.1×10-2m．sec-2, G1 = .05G0, G2 

= 0, 㲐/2㰀= 428.1Hz, 㱠0 =㱠2= 0, 㱠1= 1. (a) Tone radiated from the membrane. (b) 

Displacement. (c) Phase plots. (d) Spectra of (a). 
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For the tones produced by playing the dizi the agreement is restricted to frequencies lower than 
10 kHz (Figs. 6.11 and 6.12). Although the membrane’s phase plots of experimental and numerical 
results show similar interlocking spirals, the simulated tones do not contain rich harmonics above 10 
kHz. This discrepancy arises the possibility that either the left-hand side or the right-hand side of Eq. 
(6.1) is unrealistic. 

The left-hand side of Eq. (6.1) take into account neither the non-linear terms of orders higher 
than cubic nor the non-linear damping. When higher non-linear terms are added to it, however, I 
found that the membrane still cannot generate rich harmonics above 10 kHz. Note that the tone 
produced by singing into the dizi shown in Fig. 6.10 has a spectral content very similar to the dizi tone 
shown in Fig. 6.11 at frequencies below 5 kHz. So the vibration amplitudes of the membrane were 
approximately the same for these two tones. As the higher-order non-linearity and the nonlinear 
damping are not considered for the tone produced by singing into the dizi shown in Fig. 6.10, they 
may also not contribute to the dizi tone shown in Fig. 6.11. 

The driving force in the right-hand side of Eq. (6.1) contains the fundamental and the second 
harmonic acoustic waves in the pipe. This approximation is not suitable for loud dizi tones, where 
higher harmonics generated by the membrane are non-ignorable. However, rich harmonics above 5 
kHz are not observed in the tone spectrum produced by singing into the dizi [Fig. 6.10(d-1)], but are 
noticeable in the dizi tone spectrum [Fig. 6.11(d-1)]. Therefore, the rich harmonics above 5 kHz in 
the pipe are likely to stem from the non-linear aerodynamics at the mouth hole. Note that when the 
membrane is located near a pressure node of the fundamental wave, the dizi tones contain no 
components above 10 kHz. Therefore, neither the membrane nor the aerodynamics at the mouth hole 
alone is able to produce harmonics above 10 kHz. But when both non-linear mechanisms exist, their 
interaction could generate harmonics above 10 kHz. If the jet oscillation is sensitive to the harmonics 
around 5 kHz generated by the membrane, it may induce equivalent pressure fluctuations with rich 
harmonics, and the amplified harmonics around 5 kHz may drive the membrane to radiate harmonics 
above 10 kHz. The issue of the interactions between the membrane and the jet through upper 
harmonics propagating in the pipe will be discussed in section 6.6. 

In the study of the membrane’s harmonic generation, the experimental results suggest that the 
first formant of dizi tones can be explained by modeling the membrane as a quasi-sinusoidally driven 
Duffing oscillator, but the harmonics above 10 kHz cannot be predicted without considering higher 
harmonic terms of the driving force in Eq. (6.1). 

6.4.2 Subharmonic generation 

Fig. 6.13 presents the waveforms of the membrane and spectrum of the dizi tone containing 
subharmonics.  A doubled period in the waveform of the acoustic pressure can be observed in Fig. 
6.13(a). By integrating twice, however, the displacement waveform [Fig. 6.13(b)] loses this 
periodicity because the sound is quasi-periodic. Due to fluctuations the membrane’s phase plots 
cannot be reconstructed. 
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(a)                                                                            (b) 

 

 
(c) 

Figure 6.13: Dizi tone with subharmonics with frequencies (2n-1)f0/2. The tone was recorded above 
the dizi membrane when a large dizi in G was played in the second play mode with the fingering ●●

●●●●○. (a) Tone radiated by the membrane. (b) Displacement. (c) Spectrum of (a). The spectral 
lines of harmonics are marked with circles. 
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(a)                                                                             (b) 

 
(c)                                                                              (d) 

Figure 6.14: Stimulation of Eq. (6.1) with G0 = 8×10-3m．sec-2, G1 = .05G0, G2 = .02G0, 㲐/2㰀= 
653Hz, 㱠0 =㱠2= 0, 㱠1= 1. (a) Tone radiated from the membrane. (b) Displacement. (c) Phase 

plots. (d) Spectra of (a). 
 
Fig. 6.14 shows the simulated results of a dizi tone containing subharmonics. A period-doubling 

can be seen in the simulated phase plots [Fig. 6.14(c)]. Although the membrane’s displacement 
waveforms obtained in the experiment [Fig. 6.13(b)] and the simulation [Fig. 6.14(b)] are 
qualitatively similar, a comparison of the membrane’s acceleration waveforms [Fig. 6.13(a), Fig. 
6.14(a)] and their spectra [Fig. 6.13(c), Fig. 6.14(d)] shows that the simulated dizi tone lacks rich 
components above 10 kHz. This discrepancy is attributed to the jet’s sensitivity to high frequencies 
(see section 6.6). 

From a perceptual view, the most important feature of the subharmonic generation of the dizi is 
that the lower subharmonics are much weaker than the adjacent harmonics, while the upper 
subharmonics are comparable to the adjacent harmonics in amplitude. This feature can be observed 
in Fig. 6.13(c), where the subharmonics below 3 kHz are approximately 30 dB smaller than the 
adjacent harmonics, and the subharmonics around 8 kHz are approximately 10 dB smaller than the 
adjacent harmonics. The simulated spectrum [Fig. 6.14(d)] shows amplitude differences between 
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harmonics and subharmonics at low frequencies similar to those in the recorded spectrum [Fig. 
6.13(c)]. 

Another dizi tone was recorded for exploring the phenomenon of spectral lines widening of 
subharmonics, which can be observed in the highest two notes of the third register of the qudi and the 
bangdi. Fig. 6.15 shows the waveform and the spectrum of such a tone produced by a qudi in D. This 
phenomenon is simulated by setting the subharmonic force term with a frequency deviating from f0/2. 
When the frequencies of the harmonic forcing and the subharmonic forcing stand in the integer ratio 
2:1, the membrane oscillation is periodic. But for the fingerings ●●●●○○ and ●●●○○○, these 
two frequencies do not exactly stand in the integer ratio 2:1 (see section 4.4.2). The multi-phonic 
produced by simultaneously exciting the first and second resonances is not exactly an octave. 

 

 
(a)                                                                            (b) 

Figure 6.15: Dizi tone with subharmonics whose spectral lines are widened. The tone was recorded 
above the membrane when a qudi in D was played in the second  mode with the fingering ●●●●○○.  
(a) Tone radiated from the membrane. (b) Spectrum of (a). 
 

 
(a)                                                                           (b) 

Figure 6.16: Simulation of spectral-line-widening of subharmonics. The angular frequency of the 
subharmonic forcingin Eq. (6.1) is 㲐/2.07, with 㲐/2㰀=1100Hz. 㱠0=  0, 㱠1= 1, 㱠2= -1, G0 = 4.5
×10-4m．sec-2, G1 = .1G0 , G2 = .05G0. (a) Phase plots. (b) Spectrum of the tone. 
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Fig. 6.16 presents the phase plots and spectrum of a dizi tone with widened spectral lines of 
subharmonics. The frequencies of harmonic forcing and subharmonic forcing are set to be in the ratio 
2.07:1, which mimics the stretched octave of 1257 cents for B4/B5 (the qudi in C with the fingering 
●●●●○○) in Fig. 4.17. The simulated phase plots of the membrane show a quasi-periodicity [Fig. 
6.16(a)] and the simulated spectrum shows split spectral lines of subharmonics [Fig. 6.16(b)]. This 
partially explains the widened spectral lines of subharmonic. 

6.5 Membrane location and the dizi timbre 

In principle, the Duffing oscillator model of the membrane is able to explain the three major 
spectral features of the dizi tones in the second and third registers: the first formant, the 
odd-numbered harmonics predominance, and the subharmonics at high frequencies. Although this 
model fails to predict the spectral components above 10 kHz of dizi tones, its performance is good for 
soft dizi tones. For loud dizi tones, the acoustic field in the pipe is no longer dominated by low 
frequencies and the membrane is not driven by a quasi-sinusoidal force. 

Despite the crudeness of the Duffing oscillator model of the membrane, the present results 
could be generalized to relate the inhomogeneity of the dizi timbre in the five registers to the location 
of the membrane. Different registers correspond to different location relations between the 
membrane and the standing pressure waves in the dizi. Fig. 6.17 shows the membrane’s relative 
location to the standing waves of the fundamental, the second harmonic and the first subharmonic in 
the pipe for five registers. The spectral features of the five registers of the dizi are summarized in Tab. 
6.1. 

 
 
 
 
 
 
 

 
 
Figure 6.17: Membrane’s relative location to the standing waves of the fundamental (––) , the 
second harmonic (— ) and the first subharmonic (．—) in the pipe. For a real dizi, their wavelengths 

vary with the tone pitch. This is analogized here by taking their wavelengths constant and the 
membrane’s location variable. The number indicates the index of the register and the brace indicates 
the range of the membrane’s location.  
 

 

1  2 3 4 5  
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Location of the dizi membrane 

Register Timbre characteristics 
Fundamental Second harmonic 

First 

subharmonic 

1 Rich harmonics 
Between node and 

antinode 
Near antinode 

2 

Rich harmonics, 

odd-numbered harmonics 

predominance 

Amplitude = 0 

Near node 

3 

Rich harmonics, Subharmonics 

(odd-numbered harmonics 

predominance) 

Near antinode 

Between node and 

antinode 

4 - Near node Near antinode 

5 Rich harmonics Near antinode 

Depending on 

notes 
Between node and 

antinode 

Table 6.2: Membrane’s location correlates of spectral features of the five registers of the dizi. 
Shadowed areas represent the physical mechanisms corresponding to the spectral features. 

 
In the first register, the membrane is located near a pressure antinode of the acoustic wave of the 

second harmonic, thus driven by both the fundamental and the second harmonic; the radiating sounds 
contain both odd-numbered and even-numbered harmonics. In the second register, the membrane is 
located near a pressure node of the second harmonic wave, thus driven by the dominant fundamental; 
the radiating sounds are predominated by odd-numbered harmonics. This spectral feature also holds 
for lower notes in the third register and becomes less noticeable for upper notes in this register 
because the membrane is no longer located near a pressure node of the second harmonic wave. 

The present model of the dizi membrane also predicts that if the jet oscillations are so 
asymmetric that the second harmonic is stronger than the fundamental, the spectrum of the dizi tone 
in the first register will show a predominance of the even-numbered harmonics, because the acoustic 
pressure driving the membrane is predominated by the second harmonic. This spectral feature has 
been observed in the lowest dizi tone (Fig. 6.18). 

Subharmonics at high frequencies characteristic of the dizi tones in the third register stem from 
the subharmonic force G2cos(㲐t/2) exerting on the membrane, which is due to the excitement of the 

first mode of the air column. For a membrane-less flute, the subharmonic waves (2n-1)f0/2 are 
restricted to low frequencies and tend to be masked by adjacent strong harmonics. For a membrane 
flute, high-frequency subharmonics are generated by the non-linear membrane under the weak 
subharmonic force G2cos(㲐t/2) combined with the strong fundamental force G0cos(㲐t). 
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Consequently, subharmonics at high frequencies are comparable in amplitude with adjacent 
harmonics. 

 

 
Figure 6.18: Predominance of the even-numbered harmonics in the lowest dizi tone. (a) Sketch of the 
pressure waves of the fundamental (．—) and the second harmonic (— ). Due to asymmetric 

oscillations of the jet, the second harmonic is stronger than the fundamental. (b) Spectrum with 
dominant even-numbered harmonics around the first formant. 

 
The dull dizi tones in the fourth register and the bright dizi tones in the fifth register can easily be 

explained by the membrane’s location (see section 3.3). It should be noted that although the three 
spectral features of the dizi tones are successfully explained by a Duffing oscillator model of the dizi 
membrane, the present experiments merely account for the dizi tones in the second and third registers. 
Further studies should involve dizi tones in all registers and measurements of the absolute values of 
the acoustic pressure in the dizi. 

6.6 Aerodynamics and radiation at the mouth hole 

6.6.1 Drive mechanism of flue instruments 

In this last section on the physics of the dizi, the difficult problem of the aerodynamics at the 
mouth hole is theoretically discussed. As there have been a lot of investigations on the physics of flue 
instruments (for a recent review, see Fabre et al. 2000), this section mainly concerns the possible 
interactions between the non-linear aerodynamics and the non-linear membrane of a membrane-flue 

(a) 

(b) 

Membrane 
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instrument. 
A series of progress of physical modeling flue instruments has been made in the past decade by 

physicists at the Eindhoven University of Technology in the Netherlands (with cooperation of Institut 
de Recherche et de Coordination Acoustique et Musique Paris). Their models were based on 
sophisticated theories of fluid mechanics such as Lighthill’s definition of the acoustic field and 
source (Lighthill 1954), potential theory (Howe 1984), and vortex-sound theory (Powell 1964), 
supported by flow visualizations and dimensionless representations (Verge et al. 1994a, Verge et al. 
1994b, Verge et al. 1997a, Verge et al. 1997b, Fabre et al. 1996). Dequand’s (2000) model 
distinguished two sound source models according to the mouth geometry of flue instruments: the 
jet-drive model and the discrete-vortex model. The jet-drive model qualitatively explained the drive 
mechanism of most flutes, recorders and so on, where the ratio of the mouth width W and the jet 
thickness h is large; W/h > 2 (see Fig. 6.19). On the other hand, for W/h < 2 or higher hydrodynamic 
modes, the effects of vortices dominate and the drive mechanism must be explained by the 
discrete-vortex model. 

The jet-drive model concentrates on the jet-edge interaction, which induces a pressure 
difference 㥀p across the mouth. This pressure difference changes its sign each period of the tone 

produced by the flue instrument and sustains the acoustic wave in the pipe. It was first proposed by 
Coltman (1976) and calculated by Verge et al. (1994) with the help of conformal mapping technique. 
Incidentally, the results of Verge et al. corresponded to the source description of the edge tone by 
Powell (1961), who used Curle’s equation to calculate the far field of the sound produced by an edge 
tone configuration. The acoustic field is dominated by a dipole field corresponding to the force 

 

∫ ′= dSnpForce r
.                                                        (6.4) 

 
This is the force exerted by the flow on the labium. According to Newton’s third law, the 

lumped air at the mouth hole is driven by a force supplied by the labium (Fig. 6.19). 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6.19: Schematical depiction of the jet-drive model of a recorder-like flue instrument. 

h 

W 
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In the jet-drive model, the jet flow Qj is split by the labium into the flow Qin injecting into the 
resonator, and the flow Qout not entering the resonator. According to conservation of mass, it is 
obvious that 

 
)()( tQtQQ outinj += .                                                    (6.5) 

Qin and Qout can be written as 
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The two complementary monopole volume sources Qin' and Qout' are depicted in Fig. 6.20(a). 

The streamlines of Qin' are shown as dash lines in Fig. 6.20(b)(d). These two monopoles form a 
dipole that has the character of a force, as Rayleigh has predicted. In a lumped model, these two 
monopole sources are assumed to be placed on either side of the edge with a definite distance, shown 
as Q1 and Q2 in Fig. 6.20(b). 

 
 
 
 
 
 
 
 

(a)                                                                             (b) 
 
 
 
 
 
 

 
(c)                                                                             (d) 

 
Figure 6.20: Pressure difference induced by the time deviation of the injection into the pipe (Qin) . 
The points Q1 and Q2 present two complementary monopole volume sources. The arrows in (b) and 
(d) represent the force driving the air at the mouth hole supplied by the labium. 
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In the jet-drive model, these two complementary monopole sources induce a pressure difference 
㥀p across the mouth. This pressure difference, driving the air at the mouth hole, is in proportion to the 
time deviation of Qin (Verge 1994): 

 

dt
dQ

S
p in

e

dδρ0−=∆ ,                                                         (6.9) 

 
where Se is the area of the mouth hole and 㭀d is the “acoustic” distance between the monopole sources 
Q1 and Q2. Because the jet is observed to oscillate in phase of the acoustic flow at the mouth hole, the 
net force supplied by the labium has approximately the same direction of the acoustic flow. This 
implies a negative damping characteristic of self-sustained instruments. 

6.6.2 Jet’s sensitivity to high harmonics 

In the study of the Duffing oscillator model of the dizi membrane, the simulated results are in 
agreement with the tones generated by singing into the dizi, but there are considerable discrepancies 
between simulations and dizi tones. These discrepancies may be due to the assumption of a passive 
sound source. As this assumption is unrealistic, it is important to consider the responses of the 
vibrating jet at the mouth hole to high-frequency harmonics generated by the membrane. If the 
feedbacks of high frequencies are not negligible, the two non-linear mechanisms, the aerodynamics 
at the mouth hole and the membrane, will interact in a complicated manner. 

The harmonics in the acoustic field at the mouth hole could affect the jet motion through several 
mechanisms. First, the instability of the jet appears to be the amplifier in a flue instrument. The jet 
responds to the transverse acoustic field, which is always dominated by the fundamental in a flue 
instrument. Many studies have been devoted to the question of whether the jet responds to the 
transverse flow velocity, transverse flow displacement or transverse flow acceleration (receptivity 
problem).  Fabre et al. (2000) pointed out that both flow velocity and flow acceleration (pressure 
gradient) can be relevant. If flow separation point is fixed by a sharp edge (Fig. 6.19), there is no 
other distinction between velocity and acceleration drive than a 㰀/2 phase lag. In the case of the flute, 

the lips of the player are rounded, and hence transverse flow acceleration can affect the position of 
the separation point (Fig. 6.21). For a given radius curvature R0 of the edge, a significant contribution 
of the acceleration can be expected and the jet may be more sensitive to high-frequency harmonics, 
when fR0/u' is of the order of unity or larger. For the harmonics around the first formant of dizi tones, 
fR0/u' ≈ 2. 

Another mechanism responsible for jet’s sensitivity to high harmonics is its varicose 
oscillations due to the pressure fluctuations at the flue exit. Verge et al. (1994) showed that the 
pressure fluctuations at the mouth induce non-negligible jet velocity fluctuations at the flue exit. 
These volume flow fluctuations can induce varicose jet oscillations. This effect is more significant in 
flue instruments with shorter flue channel, because of the smaller inertia of the flue channel flow. 
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Varicose jet oscillation around 3–4 kHz observed by flow visualization was related to an edge-tone 
feedback loop (Verge et al. 1994). Ségoufin et al. (2000) also observed small vortices by flow 
visualization in the shear layers when the windway was short [Fig. 6.22(a)]. For a membrane flute, jet 
velocity fluctuations at the flue exit could be induced by the pressure fluctuations of the harmonics 
around 3–5 kHz generated by the membrane. According to Eq. (6.9), high-frequency varicose jet 
oscillations could result in rich harmonics in the pressure difference across the labium through the 
velocity fluctuations of the jet’s shear layers [Fig. 6.22(b)]. This hypothesis should be examined by 
future experiments. 

 
 
 
 
 
 
 
 
 
 
 
 
 

(a)                                                                               (b) 
Figure 6.21: Effects of transverse flow acceleration on the separation points of the jet. (a) The 
embouchure of a flute. (b) The lips are approximated as cylinders with radius R0 = 0.5 cm. The 
arrows represent the moving separation points of the oscillating jet, whose velocity profiles are 
presented by dash lines. 

 

 
 

(a)                                                                        (b) 
Figure 6.22: Varicose oscillations of the jet.  (a) Small vortices in the shear layers of the jet. Flow 
visualization by Ségoufin et al. (2000), adapted with the author’s permission. (b) Jet velocity 
fluctuations induced by the pressure fluctuations at the mouth.  

moving  

separation point 

R0 
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6.6.3 Transverse resonance of the dizi pipe 

As the dizi membrane can generate high-frequency harmonics, it is important to consider the 
filtering effect of the transverse resonances of the dizi pipe. For membrane-less flutes, this filtering 
effect is only important for turbulence noises generation. Verge et al. (1997b) found that turbulence 
noises appear highly coupled to transverse resonances of the pipe. Fig. 6.23 compares the spectra of a 
bangdi tone and a large dizi tone in the fourth register. The frequency of the lowest transverse mode, 
estimated as c/2D (D is the diameter), is indicated by the arrows. It can be observed the turbulence 
noises accumulate around the lowest transverse resonance of the pipe. 

 

 
 (a)                                                                      (b) 

Figure 6.23: Comparison of the turbulence noises produced by a bangdi and a large dizi. (a) Tone 
spectrum of a bangdi with the inner diameter of 13 mm. The corresponding lowest transverse 
resonance is approximately 13.2 kHz. (b) Tone spectrum of a large dizi with the inner diameter of 17 
mm. The corresponding lowest transverse resonance is approximately 10 kHz. 
 

 
Figure 6.24: Comparison of the spectra of a bangdi tone (left) and a large dizi tone (right). Note 
their second formant frequencies are approximately the same as the lowest transverse resonances 
shown in Fig. 6.23. 
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For membrane flutes, the filtering effect of the transverse resonances plays a role in amplifying 
harmonics around the second formant. Fig. 6.24 displays the spectra of a bangdi tone and a large dizi 
tone with rich harmonics. Their first formants are both at 6 kHz, whereas their second formants have 
different center frequencies. The spectral envelops of harmonics (Fig. 6.24) and noises (Fig. 6.23) 
provide convergent evidence supporting a robust correlation between the second formant and the 
lowest transverse resonance of the pipe. It is noteworthy that while the first formant frequency 
increases with the tone intensity, the second formant frequency is invariant for a dizi and determined 
by the pipe diameter (see also Fig. 7.1). 

6.7 Conclusions 

The specific experiment on the dizi tone for which the membrane is located near a pressure node 
of the second harmonic wave shows the success of the quasi-sinusoidally driven Duffing oscillator 
model of the membrane in explaining the dizi harmonic generation in the range below 5 kHz. In 
principle, the present model is able to explain the three major spectral features of the dizi tones in the 
second and third registers: the first formant, the odd-numbered harmonics predominance, and 
subharmonics at high frequencies. Although this model fails to predict the spectral components 
above 10 kHz of dizi tones, its performance is good for soft dizi tones. For loud dizi tones, the 
acoustic field in the pipe is no longer dominated by low frequencies and the force driving the 
membrane contains high-frequency terms. 

Rich harmonics above 10 kHz radiated by the membrane may be associated with the jet's 
sensitivity to the harmonics in the range 3–5 kHz generated by the membrane. If the jet amplifies 
these harmonics in the pipe, they may in turn drive the membrane to radiate harmonics above 10 kHz. 
The non-linear membrane, able to produce high harmonics, brings the question of the high-frequency 
response of the jet into prominence. This invites further physical studies on membrane flutes. 
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Chapter 7.  

Perception of harmonics I: Global spectral envelope 

Abstract 

The spectral distribution of harmonics of dizi tones can extend to 22 kHz, and their auditory 
attributes vary with the frequency region. The harmonics around the first formant allow the dizi to 
project through the orchestra, whereas the harmonics around and above the second formant can 
reduce breathiness by masking the turbulence noises. 
The dizi tones in the fourth register are characterized by a poor spectral content. This inhomogeneity 
of brightness introduces interesting spatial effects in dizi music: the distancing effect and the 
localization-confusion effect. Since a sound loses more high frequencies while traveling through air, 
unexpected absence of high-frequency harmonics of dizi tones might be interpreted by the auditory 
system as an increasing distance from the dizi. Furthermore, a lack of spectral components above 4 
kHz is likely to cause a confusion of sound elevation that is estimated according to high-frequency 
monaural cues. Although these two spatial effects could not actually change the psychophysical 
distance or elevation of the sound source, they appear to affect the aesthetic image of the dizi in 
music. The dizi with an inhomogeneous timbre is thus optimal for creating a multi-level auditory 
impression without changing the physical position of the instrument. 

7.1 Introduction 

The previous three chapters accounted for the physics of the dizi. In chapters 7–9 the focus turns 
to the issues concerning the perception of dizi tones. In exploring the perception of the harmonics of 
dizi tones, global spectral features are distinguished from local spectral features. This chapter 
concentrates on the global pattern of spectral envelopes of dizi tones, which is represented as the 
auditory attribute “brightness”. The local spectral feature, envelope jaggedness due to amplitude 
differences between flanking odd/even-numbered harmonics, will be discussed in chapter 8. 

It is generally believed that musical timbres are mainly determined by their spectral envelopes 
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and temporal envelopes (for a recent review, see Risset and Wessel 1999). In all studies of the timbre 
spaces of musical instruments, brightness has appeared as the primary dimension responsible for the 
spectral envelope (Grey and Gordon 1978, Wessel 1979, Iverson and Krumhamsl 1993, Krimphoff et 
al. 1994, McAdam et al. 1995, McAdam and Winsberg 2000). In neuropsychological studies of 
timbre perception, brightness was also treated as the primary spectral parameter of sound stimuli, 
which was manipulated to test the effects of brain lesions on the sensitivity to timbre dimensions 
(Samson et al. 2002). 

As the dizi has two formants with center frequencies at 4–6 kHz and 10–14 kHz, 
one-dimensional calculation models of brightness may be insufficient to describe the global envelope 
of its spectrum. Section 7.2 distinguishes the auditory attributes of the harmonics around/below the 
first formant and those around/above the second formant. In a concert hall, harmonics of dizi tones in 
different frequency regions have different radiation directionalities, which are discussed in section 7.3, 
related to dizi music recording. 

The bright sound quality of dizi tones introduced by the membrane is not uniform through the 
tone range of the dizi. Dizi tones in the fourth register lose the rich spectral content characteristic of a 
membrane flute. The inhomogeneity of brightness induces some interesting auditory associations or 
illusions. Lin (1997) mentioned the spatial effects of abrupt brightness changes in dizi music, i.e., 
when a melody ascends from bright notes to dull notes, the sound source seems to move to a remote 
place and become more difficult to localize. Section 7.4 gives the psychoacoustic basis of these 
spatial effects. Musical examples of brightness changes in dizi tones are analyzed in section 7.5. 

 

7.2 Frequency regions 

7.2.1 Auditory brightness: Definition and biological implications 

The auditory attribute “brightness” is related to the proportion of the energy distributed on high 
frequencies. Many semantic labels, such as “density” (Guirao and Stevens 1964), “sharpness” (von 
Bismarck 1974) and “nasality” (Kendall and Carterette 1993), all fall under the umbrella term 
“brightness”. The diversity of these semantic labels associated with the spectral energy distribution 
seems to reflect that the sensation evoked by high-frequency components is multifaceted as well as 
context-dependent. Moreover, clusters of spectral components at different frequency regions may be 
responsible for different auditory sensations. However, traditionally brightness has been treated as a 
one-dimensional auditory attribute in psychoacoustic models and timbre spaces. A prevailing 
calculation model of brightness in musical timbre research is the spectral centroid, defined as 

 
∑∑=

k
k

k
k AkAcentroid Spectral                                        (7.1)  
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where k is the rank of the harmonic and Ak is its amplitude. 

As the semantic label implies, bright sounds are likely to arouse exciting auditory pictures. 
Bright dizi tones are often used to depict sunny scenes or highlight a mental state change in theatre. In 
some melodramas or films, beautiful Chinese landscapes are accompanied by bright dizi melodies. In 
Taiwanese Gua opera, it has become a convention that the excited mental state of falling- 
in-love-at-first-sight is represented by dizi tones. 

The fact that high frequencies tend to evoke exciting auditory sensations can be dealt with in 
physiological, phylogenetic and ecological terms. From a physiological view, bright sounds are more 
exciting than dull sounds, partially because more auditory neurons responsible for high frequencies 
are excited. Auditory neurons with high characteristic frequencies (above 10 kHz) are excited only by 
loud, bright sounds. An analogue can be found in visual sensation, where the cone retinal is excited 
only by bright lights. 

Regarding the rise of the new field of “biomusicology” (Wallin 1991), which places the analysis 
of music origin and its application to the study of human origins at its very foundation (Brown et al. 
2001), the role of high frequencies in music can also be discussed from an evolutionary or 
phylogenetic viewpoint. High-frequency hearing is a characteristic unique to mammals, as neither 
fish, amphibians, reptiles, nor birds are able to hear above 10 kHz (e.g., Carr 1992, Köppl and Manley 
1992). Masterton et al. (1968) attributed this ability of mammals to the ossicular linkage in the middle 
ear and proposed that mammals evolved this for horizontal sound localization by means of 
high-frequency binaural cues. Heffner and Heffner et al. (1992) added that the pinna of mammals was 
developed to resolve front-back confusion and judge the elevation of sound sources by providing 
high-frequency spectral cues (this issue will be discussed in detail in section 7.4.2). These 
evolutionary events in the middle/outer ear initiated improvements in cochlear mechanisms to enable 
mammals to perceive high frequencies (Manley 2000). 

The ecological role of high frequencies in sound source localization provides new perspectives 
on the sensation of brightness. Besides sound source direction, high frequencies also contain cues for 
sound source distance. Strong high-frequency components could mean that the sound source is 
nearby, because high frequencies attenuate more rapidly than low frequencies when traveling through 
air (this issue will be further discussed in section 7.4.1). Consequently, as soon as humans or animals 
hear a sound with rich high-frequency components, they are likely to be excited, even alarmed. The 
auditory system alerts them to the presence of prey in the dark and around corners, or an approaching 
danger. This partially explains why high frequencies can be pleasant, in which case the listener is 
excited for prey; or unpleasant, for instance the listener is alarmed by danger. In the latter case the 
high frequencies may be related to the auditory attribute sharpness instead of brightness. 

While brightness is associated with pleasant and exciting auditory sensations, sharpness often 
borders on annoyance. Bismarck (1974) studied the auditory attribute evoked by high frequencies in 
terms of sharpness, an antonym of sensory pleasantness. It is noteworthy that calculation models of 
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sharpness take into account a frequency-dependent weighting factor. In Zwicker and Fastl’s (1999) 
model, the weighting factor is +1 for 1–16 bark and then increases from +1 to +4 for 16–24 Bark 
(4–20 kHz). Although this model ignores the fact that spectral components at low and mid 
frequencies can also evoke pleasantness, it is clear that spectral components above 10 kHz are 
particularly responsible for sharpness, as their sharpness weighting factors are greater than +3. This 
implies that the harmonics of dizi tones around the first formant and those around the second formant 
are likely to have different auditory attributes. 

7.2.2 Center frequencies of the two formants 

For a number of musical instruments, it is sufficient to model brightness as a one-dimensional 
auditory attribute, since spectral components of their tones are distributed at low/mid frequencies and 
only one formant is of importance. In the case of the dizi, the center frequencies of its two formants 
are separated for about 5 kHz. Regarding the wide spectral distribution of dizi tones, the traditional 
one-dimensional model of auditory brightness may oversimplify dizi timbre perception. 

As have discussed in chapter 6, the center frequencies of the first formant of the dizi tend to 
increase as the tone intensity increases, whereas the center frequency of the second is mainly 
determined by the pipe diameter. Fig 7.1 compares the spectra of three soft dizi tones produced by 
professional musicians with dizi of different sizes. As can be seen, f1 ranges from 4 to 6 kHz and f2 
increases from 10 to 13 kHz as the dizi size decreases. 

 

 
(a)                                                  (b)                                                   (c) 

Figure 7.1: Formant frequencies of the dizi. (a) Soft tone, large dizi in G. (b) Soft tone, qudi in C. (c) 
Soft tone, bangdi in F. 

7.2.3 First formant: Stream segregation and loudness 

The harmonics around the first formant of the dizi allow its sounds be easily distinguished from 
other instruments in Kunqu opera, thus reinforcing the leading role of the dizi in theatre. Because the 
membrane brings a bright timbre to the flute, dizi tones can be clearly heard by all performers and 
audiences, even when the singing and the percussion instruments are fairly loud. This is consistent 
with a general belief that brightness can best articulate stream segregation (Wessel 1979, McAdam 
and Bregman 1979). Because of the spectral energy accumulating around f1, the dizi is able to project 
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on to the whole orchestra, as can be observed in many concerto-like dizi works composed in the past 
decades. 

When the dizi is not a solo instrument, but played in a modern Chinese orchestra, it often has a 
relatively taut membrane, so that its sounds are not too overpowering. This principle of 
membrane-sealing also holds for the Korean membrane flute, the taegum. In ensemble groups, the 
taegum membrane is partially covered by a plate to reduce the coupling between the membrane and 
the air column in the pipe in order to produce a mellow timbre. By contrast, the membrane is mostly 
exposed in solo pieces to produce intense buzzing sounds (Howard 1988). 

The first formant of dizi tones plays a key role in determining loudness. Equal loudness contours 
in the hearing range show a dip in the frequency range between 3 and 5 kHz (e.g., Zwicker and Fastl 
1990). The dizi membrane effectively raises loudness of flute tones by transfering acoustic energy 
from lower frequencies to higher frequencies, to which our auditory system is more sensitive. 

7.2.4 Second formant: Sharpness and breathiness 

The harmonics around the second formant of a dizi tone are responsible for auditory sharpness. 
In Zwicker and Fastl’s (1990) model of sharpness, the weighting factor for the two highest critical 
bands (10–20 kHz) is approximately three times greater than that below 16 Bark (< 4 kHz). As the dizi 
tones in the fifth register always have strong components above 10 kHz, these components in the two 
highest critical bands can give a sharp sound quality to these dizi tones. 

Although sharpness is regarded by psychoacousticians as a synonym of auditory unpleasantness, 
musical instruments able to produce strong components above 10 kHz are widely used. For instance, 
the triangle sounds have strong spectral components above 10 kHz (Fletcher and Rossing 1991). In 
orchestrations, its timbre is known as shimmering and exciting instead of unpleasant. The dizi tones in 
the fifth register also have such a shimmering timbre. From a musical view, it remains to be clarified 
why sharp sounds, presumed to be unpleasant, are often appreciated a great deal in music. 

The second formant of the dizi plays an important role in reducing breathiness evoked by 
turbulent noises. It is mentioned in sections 6.2.1 that turbulence noises accumulate at the lowest 
transverse resonance of the pipe, typically in the frequency region between 10 and 14 kHz. In bright 
dizi tones, these noises are partially masked by the harmonics around the second formant. But for the 
dizi tones in the fourth register, no harmonics around the second formant are generated and hence 
these noises are not masked. This explains why the timbre of the dizi tones in the fourth register is not 
only characterized by low brightness, but also by high breathiness. In phoniatrics, breathiness of 
pathological human voices is also associated with turbulent noises and a relatively low intensity of 
harmonics (e.g., de Krom 1995). 

7.3 Radiation directionality 

As the membrane of the dizi is a piston-like radiator, its radiation is not isotropic for spectral 
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components with wavelengths comparable with the membrane’s diameter. The harmonics around the 
second formant of the dizi are more concentrated in the vertical direction than those around the first 
formant. Their radiation directionalities are studied here by taking the membrane to be a flanged plane 
source. The acoustic pressure p for the far field is 
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where 㮀 is the vertical angle defined by Fig. 7.2(a); J1 is a Bessel function of order one; and k = 
2㰀f/c. The factor in the square bracket in Eq. (7.2) is a function of 㮀, determining the directionality 

for the frequency f. This factor has been plotted for four frequencies of 5, 10, 15 and 20 kHz in Fig. 
7.2(b). 

 
(a)                                                                                    (b) 

Figure 7.2: Radiation directionality of the dizi membrane. (a) Angular frame of reference of the dizi 
with its membrane pointing upward. (b) Relative magnitude distribution along 㮀 for 5, 10, 15, and 

20 kHz. These curves are plotted according to the bracket in Eq. (7.2) with the membrane radius a = 
5 mm. 
 

In comparison with the horn mouth of a brass instrument or the human mouth, the size of the 
membrane is too small to result in significant radiation directionality for frequencies below 10 kHz. 
However, the radiation directionality of the harmonics above 10 kHz cannot be ignored and plays an 
important role in timbre perception. Although the dizi is able to generate harmonics with frequencies 
higher than 10 kHz, only a fraction of them directly reaches listeners. When 㮀 = 900, corresponding 

to the normal position of listeners, the sound level difference between 5 kHz and 18 kHz is 3 dB. 
Consequently, sharpness induced by the harmonics around and above the second formant is reduced 

㮀 
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by their radiation directionality. In a concert hall, listeners at higher levels are likely to receive 
stronger high frequency harmonics of the dizi. 

The radiation directionality of high-frequency harmonics is especially important for recording 
engineers. If dizi tones are recorded with a microphone located near the musician, the spectral content 
will vary with movements of the instrument because the radiation of high frequencies is concentrated 
in the direction the membrane is pointing. Fig. 7.3 shows 㥀㮀 corresponding to a movement range of 
the dizi. As the curves in Fig. 7.3(b) show, a larger 㥀㮀 leads to more amplitude fluctuation of the 

high-frequency harmonics, thus resulting in an unnaturally varying sound quality in the recorded dizi 
tones. This problem, noticeable in some live recordings of dizi music, can be removed by positioning 
the microphone a greater distance from the musician. It is suggested from Fig. 7.3(b) that the distance 
between the microphone and the dizi membrane should be three or four times larger than the 
movement range of the musician during performance. 
 
 
 
 
 
 
 
 
 
 
 
 

(a)                                                                      (b) 
Figure 7.3: Importance of the distance between the microphone and the dizi with respect to the 
radiation directionality of high-frequency harmonics. (a) Microphone located near the musician. As 
㥀㮀 > 500, the dizi movements will cause remarkable amplitude fluctuation of high-frequency 
harmonics in recording. (b) Microphone located more distant from the musician. As 㥀㮀 < 300, the 

dizi movements will cause less amplitude fluctuation of high-frequency harmonics in recording.  

7.4 Spatial effects induced by brightness changes 

As the dizi membrane is driven by acoustic pressure, it will hardly vibrate when it is located at or 
near a pressure node of the fundamental wave. It is well known by dizi players that the dizi loses its 
bright timbre for the notes in the fourth register. This brightness inhomogeniety is intrinsic for all 
membrane flue instruments, but it is treated very differently in China and Korea. Most contemporary 
dizi players in China dislike the brightness inhomogeneity. They believe that the timbre of a good 

㥀㮀 

㮀max 

㮀min 

microphone 

㥀㮀 

㮀max 

㮀min 

movement range of the dizi 
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musical instrument should be uniform. Yet, Lin (1997) indicated that the varying timbre of the dizi is 
optimal for introducing interesting spatial effects into music and for enriching the tone colors of dizi 
melodies. A similar belief prevails in the circle of Korean traditional musicians. They state that the 
variety of tone colors across various registers makes the taegum an ideal solo instrument (Howard 
1988). 

One of the auditory associations elicited by brightness changes is that the dizi sounds like a 
human voice switching from the modal to the falsetto register when a melody ascends from the third 
to the fourth register. The falsetto produces weaker high-freuqnecy harmonics than the modal register 
produced (Large et al. 1972, Monsen and Engebretson 1977). In the other words, the falsetto voice 
source is more dominated by the lower source-spectrum harmonics. The same spectral feature can be 
found in the dizi tones in the fourth register. It is interesting to note that switching between the modal 
and falsetto registers is a very important singing technique for young male roles in Kunqu opera. 

When the melody ascends from the third to the fourth register of the dizi, a dramatic decrease in 
brightness evokes some interesting auditory effects or illusions: the sound source becomes remote, 
and difficult to localize. These spatial effects have been deliberately utilized by dizi composers. For 
instance, the composer and performer Yu xunfa successfully used various dizi tone colors in Langye 
Shenyun (A Wonderful Melody of Mountain Langye) to create a multi-leveled auditory image. By 
switching from the second playing mode to the third playing mode with the same fingering, the dizi 
jumps from the third to the fourth register. It sounds as if the instrument moves to a remote place. This 
effect will be called the ‘distancing effect’ of dizi tones in the present thesis. Moreover, this dull tone 
is especially difficult to localize in comparison to normal, bright dizi tones. These two effects, the 
distancing effect and the localization-confusion effect, are rather striking in a concert hall, as the 
audience can see the player standing in the same place on stage but hear an illusion of sound source 
location change. 

Although these spatial effects in dizi music have been experienced by audiences and mentioned 
by musical aestheticians (e.g., Lin 1997), their theoretical basis remains untouched. Here the spatial 
effects will be studied theoretically in terms of the perception of auditory distance and sound source 
localization. 

7.4.1 Distancing effect and sound absorption of air 

A change in physical distance between a sound source and a listener produces a variety of 
changes in the acoustic properties of the sound reaching the listener. The principal acoustic factors or 
cues for auditory distance perception include intensity, direct-to-reverberant energy ratio, spectrum, 
and binaural differences (e.g., Zahorik 2002). Even non-acoustic factors such as vision can contribute 
to perceived distance. In dizi music, the distancing effect is, in principle, a result of a dramatic change 
of spectral envelope. 

The physical foundation of the spectral envelope change due to an increasing distance from the 
sound source is the sound attenuation in air. Sounds radiated from a remote source lose more high 
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frequencies while traveling through air, whereas there are fewer energy losses for low frequencies. 
The mechanisms of air absorption include viscosity, thermal conduction, and energy interchange 
between molecules with differing external excitation levels (Bass et al. 1990). Bass et al. (1995) 
proposed a formula for calculating the sound absorption coefficient (in decibels per 100 meters), 
which is plotted in Fig. 7.4 for various values of relative humidity. 

 
Figure 7.4: Sound absorption coefficient (in decibels per 100 meters) for air at 20oC and 1 
atmosphere calculated according to Eq. (3) in Bass et al. (1995). 
 

As can be seen, the sound absorption coefficient is an increasing function of frequency. Air 
absorption can be disregarded at low frequencies, but it becomes important for frequencies higher 
than 4 kHz. At 10 kHz, the sound attenuates 10–30 dB per 100 meters. Therefore, remote sounds are 
generally characterized by dominant low and mid frequencies. 

With the sound absorption coefficient, it is easy to estimate the “physical” distance in the 
distancing effect that occurs when a dizi melody ascends from lower registers to the fourth register. If 
we start with a dizi tone in the third register, its spectrum at an arbitrary distance can be calculated. Fig. 
7.5 compares the spectra of such a bright dizi tone at distances of 1, 100 and 500 m. As the distance 
increases, upper harmonics attenuate faster than lower harmonics. At the distance of 500 m, the 
spectral envelope shows a slope approximately 10 dB/kHz. The spectrum of a dizi tone in the fourth 
register has a similar spectral envelope slope. Therefore, if the auditory system assumes a constant 
spectral envelope of the dizi melody, a dramatic decrease in brightness in a dizi melody might be 
interpreted as if the sound source had moved to several hundred meters away. 
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(a)                                                                           (b) 

 
(c)                                                                           (d) 

Figure 7.5: Distancing effect in dizi music and its relation to air absorption. Spectrum changes in 
(a)(b)(c) due to distance increases have been calculated for relative humidity 50%. The dizi tones in 
(a) and (d) are excerpts from “Kongshan Wangyue”. (a) Spectrum of a tone in the third register of the 
large dizi at the distance of about 1 m. (b) Spectrum of the same tone at the distance of 100 m. (c) 
Spectrum of the same tone at the distance of 500 m. (d) Spectrum of a tone in the fourth register at the 
distance of 1 m. Note the similarity between this spectral slope and that of the tone in the third 
register at 500 m. 

 
One of the psychological foundations of the distancing effect is the relatively constant brightness 

of a sound object. In the natural world, many situations exist in which sensory input is perceived to be 
constant in the presence of profound changes in the physical stimulus affecting the sensory receptors. 
For example, Zahorik and Wightman (2001) showed a robust loudness constancy with changing 
sound source distance, similar in many ways to visual size constancy with changing object distance. 
The majority of musical instruments show spectral shape constancy with varying pitch. The 
distancing effect of the dizi is based on the assumption of brightness constancy. As the auditory 
system has adapted to dizi tones with a high value of brightness, it will be puzzled by a dramatic 
decrease in brightness and may associate it with an increasing distance from the sound source. 
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Although the distancing effect in dizi music can be explained in terms of air absorption, it is 
important to note that the perception of sound distance is a complicated and flexible cognitive process, 
where many acoustic cues are combined and weighted for judgments of sound distance (e.g., 
Wightman and Kistler 1997, Zahorik 2002). Next to the spectral cues, sound intensity is also a robust 
acoustic distance cue. If a decrease in brightness is accompanied by a decrease in sound intensity, 
these two coherent cues are likely to give an auditory picture of a distancing sound source. Conversely, 
if the spectral receding cue is inconsistent with other cues, the perception of sound distance could be 
ambiguous. 

A decrease in brightness in dizi music may not actually change the “psychophysical” distance of 
the sound source. Instead, it may affect the “aesthetic” image of the dizi in music. In various pieces for 
the dizi, the spectral distance cue interacts with other auditory attributes such as loudness and pitch. 
From this viewpoint, it should be more important to analyze the general attribute of the distancing 
effect in music rather than to treat it as an isolated acoustic phenomenon. Musical examples are given 
in section 7.5 to demonstrate the role of the distancing effect in various musical contexts. 

7.4.2 Localization-confusion and monaural spectral cues 

For the dull notes in the fourth register of the dizi, the absence of harmonics above 5 kHz affects 
listeners’ ability to locate the sound source. The musical impression of this difficulty in sound source 
localization is described by the Chinese word piau-miau （縹緲）. This word, roughly translated as 

“dim”, is an important aesthetic aspect in traditional music, poetry and drawing. From an acoustic 
viewpoint, the effect of localization-confusion in dull dizi tones is related to the crucial role of 
high-frequency monaural spectral cues for sound source localization. 

The horizontal localization of a sound source is believed to be processed with the interaural time 
difference (ITD) and the interaural level difference (ILD) (Blauert 1997). However, the auditory 
system cannot distinguish, based on these binaural cues, between all source positions with the same 
horizontal component that lie on the so-called “cone of confusion.” (Blauert 1997, Wightman and 
Kistler 1992) There are essential features of human sound localization that cannot be explained by 
ITDs and ILDs. One obvious example is the vertical localization on the median plane, where ITDs 
and ILDs are presumed to decline to zero. Away from the median plane, the front-back symmetry also 
results in front-back confusion. 

As mentioned in section 7.2.1, monaural spectral features due to pinna diffraction are the 
primary cues for resolving front-back confusion and estimate elevation of sound source. These cues 
result from the direction-dependent linear filtering of incoming sound waves accomplished by the 
pinna. Pinna effects start to appear at frequencies around 4 kHz, where the wavelength becomes 
comparable to the pinna size, with the so-called “pinna notch” appearing in the frequency region from 
6 to 12 kHz (Shaw 1997). The cone of confusion is resolved if the sounds to be localized have 
components extending to higher frequencies. Carlie et al.  (1999) compared localization estimates of 
all-pass, low-pass and high-pass stimuli filtered from a spectrally flat (400 Hz to 16 kHz) noise. The 
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removal of frequencies below 2 kHz had little effect on either the pattern of systematic errors or the 
distribution of localization estimates. In contrast, the removal of frequencies above 2 kHz resulted in a 
large increase in the cone of confusion errors. 

In addition to the pinna effects, the low frequency cues due to head diffraction and torso 
reflections can also contribute to localization estimates. Algazi et al. (2001) used random noise bursts 
that were low-passed with the cut-off frequency of 3 kHz in the experiments of sound localization. 
They found that when the source was located away from the median plane, subjects were able to 
estimate its elevation, often with surprisingly good accuracy. The physical origin of the 
low-frequency features was attributed primarily to head diffraction and torso reflections. 

While there is a great deal known about the manner in which the low-frequency and 
mid/high-frequency features are computed for sound source localization (e.g., Middlebrooks 1992, 
Jin et al. 2000, Algazi et al. 2001), less is known about how these cues are integrated in the auditory 
system. Moreover, the auditory system must recalibrate on a short time scale when a listener moves 
from one acoustic environment to another (Shinn-Cunningham 2000). From this view, the 
localization-confusion in dizi music may be explained by the limit of the short-term plasticity of the 
auditory system. 

In flute music, the dull tones of Baroque flutes are not likely to produce localization confusion, 
whereas the dull dizi tones appear difficult to localize. When listening to dizi tones in the lowest three 
registers, the auditory system may adapt to localize the sound source using robust spectral cues above 
4 kHz. When the spectral components in this frequency region are suddenly reduced or eliminated, 
the auditory system cannot immediately recalibrate to another mode in which the spectral cues below 
4 kHz are also used for sound localization. Consequently, the dull dizi tones tend to cause more 
localization-confusion than the dull tones of Baroque flutes. When listening to Baroque flute music, 
the auditory system may rely on low-frequency cues for sound localization and no recalibration is 
needed. 

Like the distancing effect, the localization-confusion effect of dizi tones in the fourth register 
interacts with other musical entities in various contexts. As the localization-confusion of dull tones 
mainly affect the listener’s judgment of the elevation of the sound source, and due to the robust 
association between height and pitch, a decrease in brightness combined with an increase in pitch is 
likely to induce an auditory picture of the sound source becoming higher. When a dizi melody ascends 
from the third register to the fourth register, an increase of its “musical” height will be enhanced by 
elevation-confusion of the sound source due to a lack of spectral cues above 4 kHz. In certain musical 
contexts, this effect is combined with the distancing effect, giving an auditory picture of the sound 
flying higher and further away. The spatial effects in dizi music are thus optimal for creating a 
multi-level auditory impression without changing the physical position of the instrument. 
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7.5 Brightness in dizi music 

7.5.1 Depiction of sunrise 

An increase in brightness of dizi tones is used in the qudi solo piece “Morning” to depict the 
sunrise. In the first bar the melody descends from the fourth register to the third register. The second 
bar is a crescendo tone in the third register (Ex. 7.1).  

 
 

 

Example 7.1: Opening bars of the qudi solo piece “Morning” composed by Zhao Songting. 

 
It is interesting to note that the sunrise is depicted by a descending melody rather than an 

ascending one, because the dizi tones in the third register are brighter than those in the fourth register. 
The brightness increase in the second bar results from an increase of tone intensity. 

7.5.2 Spatial effects combined with vibrato 

The dizi player and composer Yu Xunfa combined an abrupt change in brightness with vibrato in 
the large dizi solo piece “A Wonderful Melody of Mountain Langye”. The four-tones melody is 
produced with the same fingering ●●●○○○○, going through the second, third, second, and first play 
modes (Ex. 7.2). As can be seen in the spectrogram, the second note in the fourth register has a 
spectral content poorer than the note in the third register. Hence, the second tone sounds particularly 
remote and dim because of the spatial effects due to brightness changes. 

 

 
 

 

Example 7.2: Spatial effects in the large dizi solo piece “A Wonderful Melody of Mountain Langye”. 

4th reg. 3rd reg. 1st reg. 3rd reg. 

4th reg. 3rd reg. 
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7.5.3 Rapid changes in brightness 

The dizi player and composer Wang Ciheng combined changes in brightness and pitch in the 
bass dizi solo piece “Kongshan Niaoyu” (Watching the Moon in an Empty Mountain). The melody 
moves in the third and fourth registers (Ex. 7.3). As lower notes in the third register are brighter than 
higher notes in the fourth register, the sound source seems to move up and down, and thereby this 
melody may call to mind a bird. In this example, decreases in brightness are combined with increases 
in pitch to give an auditory picture of the sound flying higher. 

 

 
 

 

Example 7.3: Spatial effects in the large dizi piece “Watching the Moon in an Empty Mountain”. 

7.6 Conclusions 

The auditory attributes of the harmonics of dizi tones vary with the frequency region. The 
harmonics around the first formant, responsible for brightness, contribute to articulating stream 
segregation of the dizi, whereas the harmonics around and above the second formant, responsible for 
sharpness, can reduce breathiness by masking the turbulence noises. 

When a dizi melody moves form third or fifth registers to the fourth register, a dramatic decrease 
in brightness introduces two spatial effects: the distancing effect and the localization-confusion effect. 
Although these two spatial effects could not actually change the psychophysical distance or elevation 
of the sound source, they appear to affect the aesthetic image of the dizi in musical contexts, where the 
spatial effects are combined with other musical entities such as loudness, pitch and vibrato. 

References 

Algazi, V.R., Avendano, C., and Duda, R.O. (2001). Elevation localization and head-related transfer 
function analysis at low frequencies. Journal of the Acoustical Society of America 109(3), 
1110-1122. 

4th reg. 3rd reg. 4th reg. 3rd reg. 



131 

 

 

Bass, H.E., and Shields F.D. (1990). Absorption of sound in air: high-frequency measurements. 
Journal of the Acoustical Society of America 88, 2019-2021. 

Bass, H.E., Sutherland, L.C., Zuckerwar, A.J. Blackstock, D.T., and Hester, D.M. (1995). 
Atmospheric absorption of sound: Further developments. Journal of the Acoustical Society of 
America 97(1), 680-683. 

von Bismarck, G. (1974). Sharpness as an attribute of the timbre of steady sounds. Acustica 30, 
160-171. 

Brown, S., Merker, B., and Wallin, N.L. (2001). An introduction to Evolutionary Musicology. In: The 
Origins of Music (edited by N.L. Wallin, B. Merker and S. Brown), MIT Press, 3-24. 

Carr, C.E. (1992). Evolution of the central auditory system in reptiles and birds. In: The Evolutionary 
Biology of Hearing (edited by D.B. Webster, R.R. Fay and A.N. Popper), Springer-Verlag, 
511-544. 

Carlie, S, Delancy, S., and Corderoy, A. (1999). The localization of spectrally restricted sounds by 
human listeners. Hearing Research 128, 175-189. 

de Krom, G. (1995). Some correlates of pathological breathy and rough voice quality for different 
types of vowels fragments. Journal of Speech and Hearing Research 38, 794-811. 

Fletcher, N.H., and Rossing, T.D. (1991). The Physics of Musical Instruments. Springer-Verlag. 
Grey, J.M. (1977). Multidimensional perceptual scaling of musical timbre. Journal of the Acoustical 

Society of America 61, 1270-1277. 
Grey, J.M., and Gordon, J.W. (1978). Perceptual effects of spectral modifications on musical timbres. 

Journal of the Acoustical Society of America, 63, 1493-1500.  
Guirao, M., and Stevens, S.S. (1964). Measurement of auditory density. Journal of the Acoustical 

Society of America 36, 1176-1182. 
Heffner, R.S., and Heffner, H.E. (1992). Evolution of sound localization in mammals. In: The 

Evolutionary Biology of Hearing (edited by D.B. Webster, R.R. Fay and A.N. Popper), 
Springer-Verlag, 691-716. 

Howard, K. (1988). The Taegum. In: Korean Musical Instruments, Se-Kwang Music Publishing, 
99-117. 

Iverson, P., and Krumhansl C.L. (1993). Isolating the dynamic attributes of musical timbre. Journal of 
the Acoustical Society of America 94(5), 2595-2603. 

Jin, C., Schenkel, M., and Carlile, S. (2000). Neural system identification model of human sound 
localization. Journal of the Acoustical Society of America 108(3), 1215-1235. 

Kendall, R.A., and Carterette, E.C. (1993). Verbal attributes of simultaneous wind instrument timbres: 
I. Von Bismarck’s adjectives. Music Perception 10(4), 445-468. 

Köppl, C., and Manley, G.A. (1992). Functional consequences of morphological trends in the 
evolution of lizard hearing organs. In: The Evolutionary Biology of Hearing, (Ed. by D.B. 
Webster, R.R. Fay and A.N. Popper) Springer-Verlag, 489-510. 

Krimphoff, J., McAdams, S., and Winsberg S. (1994). Caractérisation du timbre des sons complexes. 



132 

 

 

II Analyses acoustiques et quantification psychophysique. Journal de Physique IV, Colloque C5, 
4, 625-628. 

Large, J., Iwata, S., and von Leden, H. (1972). The male operatic head register versus falsetto. Folia 
Phoniatrica 24, 19-29. 

Lin, G.F. (1997). Dikuan Yioqin. （林谷芳《諦觀有情：中國音樂裡的人文世界》，台北：望

月文化） 

Manley, G.A. (2000). Cochlear mechanisms from a phylogenetic viewpoint. Proc. Nat. Acad. Sci. 
(USA) 97(22), 11736-11743. 

Masterton, B., Heffner, H., and Ravizza, R. (1969). The evolution of high-frequency hearing. Journal 
of the Acoustical Society of America 45, 966-985. 

McAdams, S., and Bregman, A.S. (1979). Hearing musical streams. Computer Music Journal 3(4), 
26-43. 

McAdams, S., Winsberg, S., Donnadieu, S., de Soete, G., and Krimphoff J. (1995). Perceptual scaling 
of synthesized musical timbres: Common dimensions, specificities, and latent subject classes. 
Psychological Research 58, 177-192. 

Middlebrooks, J. (1992). Narrow-band sound localization related to external ear acoustics. Journal of 
the Acoustical Society of America 92(5), 2607-2624. 

Monsen, R.B., and Engebretson, A.M. (1977). Study of vibrations in the male and female glottal wave. 
Journal of the Acoustical Society of America 62, 981-993. 

Samson, S., Zatorre, R.J. and Ramsay, J.O. (2002). Deficits of musical timbre perception after 
unilateral temporal-lobe lesion revealed with multidimensional scaling.  Brain 125, 511-523. 

Shaw, E.A.G. (1997). Acoustical features of the human external ear. In: Binaural and Spatial Hearing 
in Real and Virtual Environments (edited by R. H. Gilkey and T. R. Anderson), 25–47. 

Shinn-Cunningham, B. (2000). Learning reverberation: Implications for spatial auditory displays. 
International Conference on Auditory Display, 126-134. 

Shinn-Cunningham, B. (2001). Models of plasticity in spatial auditory processing. Audiology and 
Neuro-Otology 6, 187-191. 

Wallin, N.L. (1991). Biomusicology: Neurophysiological, Neuropsychological and Evolutionary 
Perspectives on the Origins and Purposes of Music, Pendragon Press. 

Wessel, D. (1979). Timbre space as musical control structure. Computer Music Journal 3(2), 45-52. 
Wightman, F.L., and Kistler, D.J. (1992). The dominant role of low-frequency interaural time 

differences in sound localization. Journal of the Acoustical Society of America 91, 1648-1661. 
Zahorik, P., and Wightman, P.L. (2001). Loudness constancy with varying sound source distance. 

Nature Neuroscience 4, 78-83. 
Zahorik, P. (2002). Assessing auditory distance perception using virtual acoustics. Journal of the 

Acoustical Society of America 111(4), 1832-1846. 
Zwicker, E., and Fastl, H. (1990). Psychoacoustics: Facts and Models. Springer-Verlag. 
 



 

 

 

Chapter 8.  

Perception of harmonics II: Predominance of 

odd-numbered harmonics 

Abstract 

Dizi tones with weak even-numbered harmonics are characterized by the hollow and/or nasal sound 
qualities described by Helmholtz. Nasal voices produced with a water membrane in the nasal cavity 
have the spectral feature of a predominance of odd-numbered harmonics around 5 kHz and a 
sounding mechanism similar to those of the dizi tones. 
An analogy is proposed, comparing the spectral feature of large amplitude differences between odd- 
and even-numbered harmonics and the visual pattern of luminance-contrasting gratings. As these 
gratings make a strong visual impression, so too does a predominance of odd-numbered harmonics 
evoke a distinct timbre. When this predominance occurs at high frequencies, interference between 
adjacent harmonics are largely reduced. This may explain why nasal dizi tones are described as 
‘sweet’ by musicians. 
The predominance of odd-numbered harmonics at high frequencies can induce additional pitches, 
which enrich the texture in dizi solo music. An autocorrelation model of pitch suggests the 
conditions for the existence of the additional pitches. Since these two conditions are always satisfied 
in the dizi tones in the second and third registers but not in most tones produced by other musical 
instruments, this multi-pitch phenomenon is fairly unique to the dizi. 

8.1 Introduction 

In chapter 7 the global spectral envelope was studied and related to the bright sound quality in 
dizi tones. This chapter accounts for the local spectral envelope feature of significant amplitude 
differences between the adjacent odd- and even-numbered harmonics. This type of spectral envelope 
jaggedness is distinguished from the spectral envelope jaggedness due to significant amplitude 
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differences between the adjacent harmonic/subharmonic components. The latter will be discussed in 
the next chapter. 

In timbre research, local features of spectral envelopes have attracted less attention than the 
overall spectral envelope, which is related to auditory brightness. Spectral envelope jaggedness, 
sometimes called “irregularity”, has seldom been regarded as a dimension in timbre spaces. The third 
dimension of Krumhansl’s (1989) timbre space, originally labeled “spectral flux”, was re-interpreted 
by Krimphoff et al. (1994) as spectral envelope irregularity, which was defined as the log of the 
standard deviation of component amplitudes from a global envelope derived from a running mean of 
the amplitudes of three adjacent harmonics. However, the correlation between the third dimension 
and the spectral envelope irregularity was medium (Krimphoff et al. 1994, McAdams et al. 1995). 
The predominance of odd-numbered harmonics in clarinet tones is frequently treated as “specificity” 
in timbre spaces (Krumhansl 1989, Winsberg and Carroll 1989b, McAdams et al. 1995), thus 
indicating that few musical instruments, at least amongst those taken in timbre research, produce 
tones with significantly jagged spectra. Another reason for the lack of attention paid to spectral 
envelope jaggedness may be that no auditory attributes have been found which correlate with this 
spectral feature. 

From a physical point of view, jagged spectra of musical tones are most easily caused by a 
predominance of odd-numbered harmonics. In addition to the clarinet, tones with weak 
even-numbered harmonics at low frequencies can also be produced by stopped organ pipes and 
panpipes. Plucking a string at the midpoint, as in harp or sometimes in guitar playing, can also 
produce such tones. Among these instruments, however, only the clarinet and the harp have been 
taken into timbre spaces. 

It is invalid that no auditory attributes have been related to jagged spectra. Hermann von 
Helmholtz (1877) described tones dominated by odd-numbered harmonics as hollow or nasal, 
although his observation have generally been neglected for more than a century. It is important to note 
that Helmholtz distinguished the auditory attribute correlated to the predominance of lower 
odd-harmonics (hollowness) from that of upper odd-harmonics (nasality). From his definition, the 
dizi appears to be the musical instrument most capable of producing nasal tones with odd-numbered 
harmonics predominating around in the range of 4 to 6 kHz, whereas the clarinet and panpipes are just 
able to produce hollow tones with the predominance of odd-numbered harmonics restricted to low 
frequencies. Helmholtz’s hollowness and nasality are revisited in section 8.2 with new 
psychophysical evidence. 

While the mechanics underlying the spectral feature of odd-numbered harmonics predominance 
was explored in chapter 6, this chapter accounts for the perception of this spectral feature. Section 8.3 
focuses on the timbre perception of the odd-numbered harmonics predominance, whose importance is 
discussed from various aspects, including multi-dimensional timbre analysis, analogue to visual 
sensation and critical bandwidth. 

In addition to the distinct timbre of dizi tones with a predominance of odd-numbered harmonics, 
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this spectral feature can result in a multi-pitch phenomenon when it is significant at high frequencies. 
Bright dizi tones in the second and third registers tend to have additional pitches moving parallel 
above the fundamental pitch contour. In section 8.4 this pitch effect is related to the shifted residue 
pitch evoked by equally spaced inharmonic components (Boer 1956, Schouten et al. 1962, Patterson 
1973, Patterson and Wightman 1976). Pitch models in both the frequency-domain and time-domain 
are used in the preliminary research on the multi-pitch phenomenon of dizi tones with odd-numbered 
harmonics dominating at high frequencies. 

8.2 Helmholtz’s hollowness and nasality revisited 

The qualitative definition of the sound quality evoked by a predominance of odd-numbered 
harmonics in a complex tone was first given by Hermann von Helmholtz (1877). He reported that if 
only the odd-numbered harmonics were present, the quality of the tone was hollow, and when a large 
number of such upper harmonics were present it was nasal. It is interesting to note that Helmholtz’s 
observations on these two sound qualities has attracted little attention from psychoacousticians or 
musicologists. The present study of the perception of dizi tones, predominated by odd-numbered 
harmonics, leads me to revisit Helmholtz’s auditory hollowness and nasality. 

8.2.1 Hollow sounds in music 

While there are ambiguities of the definition of the hollow sound quality, some electrical sound 
engineers describe the sounds of square waves and triangle waves as “hollow and clarinet-like”. The 
common feature shared by square waves, triangle waves and low clarinet tones is a predominance of 
odd-numbered harmonics. 

The best-known musical tones characterized by a predominance of odd-numbered harmonics 
are low-pitched clarinet tones. Clarinet spectra show almost without exception an odd-harmonic 
predominance from the lowest tones through written top-line F, regardless of the pitch of the 
instrument itself (Gibson 1994). For low clarinet tones, the resonator is approximately an open-closed 
cylindrical pipe with the reed as the closed end. Therefore, only the odd-numbered harmonics can 
establish standing waves in an ideal stopped pipe, while the low even-numbered harmonics are 
suppressed. Fig. 8.1(a) shows the spectrum of a bass clarinet tone with significant amplitude 
differences between adjacent odd- and even-numbered harmonics. 
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(a)                                                 (b)                                                 (c) 

Figure 8.1: Spectra of hollow tones produced by woodwind instruments. (a) The bass clarinet.  (b) 
The panpipe. (c) The recorder (accompanied by the organ). 

 
It is interesting to note that clarinet tones are seldom described as hollow,2 which might be 

considered as a negative semantic label for Western musicians. The lowest register of the clarinet and 
the bass clarinet, usually called the chalumeau register, is described in orchestration textbooks as 
“warm and rich”, sometimes “mysterious, shadowy or sinister” (Adler 2002). However, some 
composers were certainly aware of the hollow sound quality of these notes. For instance, Giuseppe 
Verdi (1813–1901) used unisons of two bass clarinets and two bassoons to create a “hollow and 
severe” sonority in his revised version of Macbeth.3 

Besides reed instruments, flue instruments with stopped cylindrical pipes can also produce 
hollow sounds. Fig. 8.1(b) shows the spectrum of a panpipes tone, which was described as hollow 
because of the odd-numbered harmonics predominance (Fletcher and Rossing 1991). In spite of open 
cylindrical resonator, the flute and the recorder sometimes produce tones with the predominance of 
lower odd-numbered harmonics when the embouchure leads to fairly symmetrical jet vibrations [Fig. 
8.1(c)]. 

The dizi produce sounds dominated by odd-numbered harmonics through a non-linear 
mechanism. When the membrane is driven by a sinusoidal acoustic pressure wave, its cubic 
non-linearity will generate odd-numbered harmonics (see chapter 6). Dizi tones in the second and 
third registers are thus perceptually comparable to those produced by stopped organ pipes or panpipes. 
Zhao Songting (1985) noticed that the bass dizi has a timbre similar to the clarinet. This timbre 
resemblance is likely to be due to the predominance of odd-numbered harmonics of their tones. 

8.2.2 Psychological basis of hollow sound quality 

In chapter 7 it was argued why the sounds containing strong high-frequency components are 

                                                      
2 In a study of verbal attributes of the clarinet’s timbre (Jost 1967), listeners were asked to describe clarinet notes 

within 60 attributes. But “hollow” was omitted from this verbal attribute list. 
3 Verdi’s letter stated “The appearance of Hecate should be accompanied by the clarinet and bass clarinet in 

unison with the cello and bassoon. They will result in a hollow and severe sound (suono cupo e severo come 
esige), as the situation demands.” (January 1865, letter to L. Escudier). 
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described as “bright”, a semantic label normally used in visual sensation. The same question can be 
asked in exploring auditory hollowness. 

The label “hollowness” in audition can be explained in terms of an association between the 
shape of a sounding object and its sound spectrum; our cognitive system may have learned to judge 
whether an object is hollow according to its sounds. When a piece of hollow bamboo is exposed to a 
grazing wind flow along its opening, for instance, its “whistle” sounds will be dominated by 
odd-numbered harmonics. Such sounds may have been associated with hollow objects and labeled as 
hollow according to their shape through a learning process. 

It remains to be clarified why the sounds produced by open cylindrical pipes or stopped conic 
pipes are not described as “hollow” in spite of their hollow shape. Note that their sounds do not 
possess spectral features that can easily be extracted for object identification. Hence, these hollow 
objects provide no distinct auditory cues worth learning for our cognitive system. On the other hand, 
the tones with dominant odd-numbered harmonics have a robust spectral feature for sound 
recognition. This feature differentiates the sounds produced by stopped cylindrical pipes from other 
sounds. We may have learned to extract this spectral feature and utilize it for judging the shape of 
objects emitting the sound, especially when they are not within the field of vision. 

8.2.3 Nasality in speech and music 

Although nasality in speech has been extensively studied for decades, its spectral cues are 
related to the overall spectral shape rather than significant amplitude differences between odd- and 
even-numbered harmonics, as proposed by Helmholtz (1877). It has been observed that the reduction 
in amplitude of the first formant is the primary cue of nasalization (e.g., Fant 1960). Nasal coupling 
during vowel production was also found to give rise to a pole and a zero in the region of the first 
formant introducing a spectral peak (House and Stevens 1956), whose frequency for nasalized vowels 
in German (Heike 1999), English and French (Chen 1997) has been reported. Another nasal peak 
between 250 and 450 Hz has been observed in studies of vowel nasalization (e.g., Dang and Honda 
1995). The acoustic cues of hypernasality in children were also explored by formant analysis 
(Hawkins and Steven 1985). 

In musical timbre research, Rusko (1997) systematically classified nasality of speech into four 
types: nasal consonants (with closed oral cavity), nasalized vowels, closed nose nasalization, and 
fully closed nasalization. Various nasal musical sounds were discussed within this classification. The 
clarinet, violin “con sordino”, trumpet and organ register “nasal”, all belonged to nasalized vowels, 
which were characterized by a weakening of the first formant and the emergence of additional 
formants. The predominance of odd-numbered harmonics of clarinet tones was not mentioned there. 

8.2.4 Nasal voices produced by a membrane 

The literature review cited above reveals that the nasal quality mentioned by Helmholtz (1877) 
has received no support in speech and music research; Helmholtz’s observation of nasality may be 
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either invalid, or imply a new type of nasal voice. I argue that Helmholtz’s nasality corresponds to a 
new type of nasal voice, which has a sounding mechanism similar to the dizi. 

The nasal voice correlated to Helmholtz’s observation of nasality is produced when there is a 
water membrane in the nasal cavity. This membrane is presumed to have a cubic non-linearity and be 
driven by a quasi-sinusoidal acoustic wave generated by falsetto. Fig. 8.2 shows the spectrum of a 
voice produced by me with the mouth closed and recorded beneath the nose. I felt that a water 
membrane in the nasal cavity vibrated sympathetically while I was singing in falsetto register. This 
membrane produced rich odd-numbered harmonics. In the frequency region 2–5 kHz, a 
predominance of odd-numbered harmonics can be noticed. This preliminary experiment provides 
physical evidence for Helmholtz’s observation that if odd-numbered harmonics dominate at high 
frequencies, the quality of the tone is nasal. A model for the production of this new type of nasality is 
schematically depicted in Fig. 8.3. It is noteworthy that the water membrane plays a role analogous to 
the dizi membrane in producing odd-numbered harmonics through a cubic non-linearity. 

 
Figure 8.2:  Spectrum of a voice produced with the mouth closed and a membrane in the nasal cavity.  
 
 

 
 
 
 
 

 
 
 
 
Figure 8.3: Model of the production of nasal voices with the predominance of odd-numbered 
harmonics at high frequencies. A quasi-sinusoidal falsetto voice is generated by the vocal folds. If 
there is a water-membrane with cubic non-linearity in the nasal cavity, this membrane will transfer 
acoustic energy from the fundamental to higher frequencies by producing odd-numbered harmonics. 

water membrane with cubic non-linearity 

vocal folds 

sound with odd-numbered harmonics 

dominating in the range of 2 - 5 kHz 

oral cavity nasal cavity 
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8.3 Timbre perception 

8.3.1 Odd-numbered harmonics predominance in timbre spaces 

The above revisit of Helmholtz’s auditory hollowness and nasality highlights the perceptual 
importance of the two sound qualities. However, in timbre research, the degree of odd-numbered 
harmonics predominance has never been treated as a dimension in timbre spaces, but a “specificity” 
of the clarinet (Krumhansl 1989, Winsberg and Carroll 1989b, McAdams et al. 1995). The specificity 
of a timbre in multidimensional scaling analysis represents its unique, special characteristics that 
make them dissimilar from the other timbres (Winsberg and Carroll 1989a, 1989b). The specificities 
are involved in the calculation of the perceptual dissimilarity, or distance, between timbre i and timbre 
j, dij as follows (McAdams et al. 1995) 
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where xik is the coordinate of the timbre i on the dimension k and si is its specificity. 

The specificity of the clarinet is always the highest of all natural timbres. This can be noted in 
Table 8.1, which gives the highest three specificities of natural timbres reported by Krumhansl (1989) 
and McAdams et al. (1995). The high specificity of the clarinet was related to its “unique” spectral 
feature of the predominance of odd-numbered harmonics (Krumhansl 1989, McAdams et al. 1995). I 
argue that the harp, which has a high specificity, also possesses this feature. This spectral feature, 
possibly responsible for the characteristic timbre of the harp, is most significant when the string is 
plucked at the midpoint. 
 

Timbre Specificity Timbre Specificity 

Clarinet 25.70 Clarinet 6.4 

Harpsichord 22.06 Vibrone 6.4 

Harp 18.16 Harpsichord 4.7 

Table 8.1: The highest three specificities of timbres. Krumhansl’s (1989) data are shown on the left 
and McAdams’ et al. (1995) on the right row. 

 
If the high specificities of the clarinet and the harp are both due to the odd-numbered harmonics 

predominance, this spectral feature is no longer unique to an instrument and the degree of this 
predominance should be treated as a new dimension. Therefore, the distance between a clarinet tone 
and a harp tone, d12, should be given by 
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where ohp represents the degree of the odd-numbered harmonics predominance, which can be 
calculated as, for example, the average amplitude difference between adjacent odd- and 
even-numbered harmonics in decibel. 

Eq. (8.2) is more suited than Eq. (8.1) to estimate the perceptual dissimilarities between the 
timbres such as the clarinet, the harp, the panpipes, stopped organ pipes, and the dizi. Their sound 
spectra show various degrees of the predominance of odd-numbered harmonics. For these musical 
instruments, this degree varies through out their tone range. Hence, this dimension is important not 
only in distinguishing between instruments having jagged or smooth spectral envelopes, but also in 
differentiating the timbres of the same instrument, as it strongly depends on registers as well as 
performance techniques, such as the embouchure for the flute (see sections 3.4.2 and 6.6.1) and the 
plucking point for string instruments. 

8.3.2 Grating in harmonic template 

Despite the ignorance of spectral envelope jaggedness in psychoacoustics, the auditory system 
shows a high sensitivity to the microstructure of spectral envelopes. McAdams et al. (1999) studied 
the perceptual importance of various spectrotemporal features by using discrimination paradigms on 
simplified musical tones. Among the six spectrotemporal simplifications applied to seven instruments 
tones, they found that the most easily detected was a smoothing of the spectral envelope, 
accomplished by replacing each harmonic amplitude by the average of itself and its two neighbors. 

The pattern of jagged spectra in hollow/nasal sounds has an analogue in visual sensation: the 
pattern of luminance-varying gratings. This similarity can be demonstrated by transforming a 
spectrum to a luminance-defined picture. Fig. 8.4 presents two sound spectra of the dizi and their 
corresponding one-dimensional luminance-varying pictures. The luminance of every stripe is 
determined in terms of a linear function of the harmonic amplitude (in decibel). As this pattern is very 
distinct in visual world, the odd-numbered harmonics predominance can similarly produce a strong 
impression, thus playing a role in auditory pattern cognition. 

One of the physiological foundations of the high sensitivity to the microstructure of a spectral 
envelope may be the principle of lateral inhibition in the nervous system. This principle may play a 
role in detecting a medium predominance of odd-numbered harmonics, such as the dizi tone described 
in Fig. 8.4(b). Traditionally, lateral inhibition in vision is thought to detect and highlight edges and 
peaks in the special pattern derived from the average firing-rates of the ganglion cells (Ratliff and 
Hartline 1959). Shamma (2001) suggested that the principle of lateral inhibition might also exist in 
the auditory nervous system for extracting the shape of spectral envelopes. He proposed the existence 
of a unified computational framework for central auditory and visual processing. Recent theoretical 
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views and experiments supported a unified proto-cortical plan for all sensory areas (Dennis and 
O’Leary 1989, Sur et al. 1988). The psychoacoustic finding of a high sensitivity of the auditory 
system to a spectral envelope smoothing (McAdams et al. 1999) also suggested a lateral inhibition 
network at the level of the harmonic template, which can enhance the amplitude differences between 
adjacent harmonics, thereby facilitating the detections of spectral envelope jaggedness as well as 
formants bandwidth. This hypothesis invites further psychophysical and physiological research. 

 

 
(a)                                 (b) 

Figure 8.4: Spectra of two dizi tones (above) and the corresponding luminance-varying pictures 
(below), where the luminance of each stripe is defined as [(Amplitude in dB)+30]/80. (a) Dizi tone 
with a high degree of the odd-numbered harmonics predominance. (b) Dizi tone with a medium 
degree of the odd-numbered harmonics predominance. 

8.3.3 Critical bandwidth correlates of hollowness/nasality 

Helmholtz distinguished the auditory attribute correlated to the predominance of low-frequency 
odd-harmonics from that of high-frequency odd-harmonics. The former elicits the hollow quality and 
the latter the nasal quality. This differentiation of the two similar sound qualities, reflecting 
Helmholtz’s extraordinary ability to analyze sounds with his ears, can be related to the 
psychoacoustic aspect of critical bandwidth. 

The absence of even-numbered harmonics at high frequencies largely reduces interferences 
between harmonics in critical bands. At high frequencies, critical bandwidth becomes larger and more 
harmonics lie in the same critical band. If the even-numbered harmonics at high frequencies are 
absent, the enlarged spacing between spectral components will reduce unpleasant beatings in critical 
bands, which always characterize bright musical tones such as trumpet tones. Regarding the rich 
spectral content inherent in a bright tone, suppressing even-numbered harmonics at high frequencies 
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may be the most efficient way to reduce interference between harmonics without affecting brightness 
and pitch. On the other hand, the absence of even-numbered harmonics at low frequencies is unlikely 
to reduce beatings in critical bands, because critical bandwidths are less than 280 Hz in the frequency 
range below 2 kHz. 

Hollowness and nasality can coexist in a dizi tone, as shown in Fig. 8.5. This spectrum compares 
the resolvability of harmonics in various frequency regions, which is defined as the division of the 
critical bandwidth and the fundamental frequency (Carlyon and Shackleton 1994), namely the 
number of harmonics within the same auditory channel. Around 0.5 kHz, the resolvability is 0.2 and 
the resolvability of odd-numbered harmonics is 0.1. Around 4.5 kHz, the resolvability of harmonics is 
1.8 and it decreases to 0.9 when the even-numbered harmonics are absent. The reduction in 
interference between harmonics is noticeable at high frequencies. 

Comparing these dizi tone spectra with those of the clarinet, panpipes and the Boehm flute (Fig. 
8.1), I suggest that the nasal quality mentioned by Helmholtz is fairly unique to the dizi, while the 
hollow quality is more common in woodwinds and plucked-string instruments. It is interesting to note 
that the hollow sound quality of low-pitch clarinet tones is sometimes associated with melancholy, 
whereas the bright dizi tones in the second and third registers are described by dizi musicians as “clear 
and sweet”, if the odd-numbered harmonics predominate the first formant. The sweet sound quality 
may be relevant to reductions in interference between high harmonics in critical bands. 

 

 
Figure 8.5: Predominance of odd-numbered harmonics in various frequency regions.  Spectrum of 
the dizi tone B4 (f0 = 492 Hz) produced by the large dizi with fingering ●○○○○○○, first play mode. 
The predominance of odd-numbered harmonics in different frequency regions is marked with arrows. 
The pairs of numbers present the resolvabilities of harmonics for the presence of both even- and 
odd-numbered harmonics and for the absence of even-numbered harmonics. Resolvability reduction 
due to the absence of even-numbered harmonics is more significant at higher frequencies. 
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8.4 Pitch perception 

8.4.1 Residue pitch of double-spaced components 

The focus of this section turns from timbre perception to the pitch perception associated with 
those dizi tones having dominant odd-numbered harmonics at low or high frequencies. Benade (1976) 
reported that the low notes on a clarinet tended to be perceived as an octave higher because the 
even-numbered harmonics were always fairly weak.4 It is interesting to examine his observation on 
sounds with “double-spaced” harmonics in the light of existing models of pitch extraction. 

 

 
(a)                                                                    (b) 

Figure 8.6: Residue pitches induced by four consecutive equal-amplitude odd-numbered harmonics 
of the fundamental frequency f0 = 200 Hz. (a) Spectrum of the complex tone consisting of 1st, 3rd, and 
5th harmonics. The harmonic template (‘△’) of 2f0 = 400 Hz does not fit these three components. (b) 
Spectrum of the complex tone consisting of 7th, 9th, and 11th harmonics. The harmonic templates of 
360 Hz and 450 Hz fit these three components. 

 
We first consider the “template-based” pitch model relying on spectral cues. This approach 

assumes that the pitch corresponds to the “harmonic template” that best fits the spectral components 
of a sound (e.g., Goldstein 1973, Terhardt 1974). Fig. 8.6 shows the spectra of two complex tones 
consisting of three consecutive odd-numbered harmonics with the fundamental frequency f0 = 200 Hz. 
Referring to the “template-based” model of residue pitch, odd-numbered harmonics at low 
frequencies [Fig. 8.6(a)] cannot induce a pitch 2f0 = 400 Hz, because the harmonic template of 2f0 
does not match the first three odd-numbered harmonics. On the other hand, the complex tone 
consisting of the 7th, 9th, and 11th harmonics could induce residue pitches of 9f0/5 = 360 Hz and 9f0/4 
= 450 Hz, because their harmonic templates approximately match these upper odd-numbered 
                                                      
4 Benade appeared to follow Fletcher’s (1924) hypothesis that the residue pitch was extracted from distortion 

products of non-linear cochlear responses such as summation tones and difference tones, which Benade (1976) 
called “heterodyne components”. 
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harmonics [Fig. 8.6(b)]. Although the upper odd-numbered harmonics are double-spaced, the residue 
pitches they induced are not exactly equal to 2f0 as Benade (1976) suggested. This effect is closely 
related to the pitch shift of the residue of equally spaced inharmonic components. 

The pitch shift of the residue was first noticed by Schouten (1940), but it received little attention 
until Boer’s (1956) dissertation. Boer used complex tones consisting of five inharmonic components 
spaced 200 Hz apart and found that the pitch shift was a linear function of the frequency shift of these 
components. A number of experiments were dedicated to this proportionality value (Schouten et al. 
1962, Patterson 1973, Patterson and Wightman 1976). In Fig. 8.6(b), the pitch shift is 100 Hz and the 
harmonics frequency shift is 400 Hz, so the proportionality value is 0.25. In Fig. 8.6(c), the pitch shift 
is 80 Hz and the proportionality value is 0.2. These values replicate Patterson’s (1973) observations 
that the second lowest component dominated in determining the residue pitch extracted from the 
equal-amplitude inharmonic components when all components are above the fourth harmonic of that 
pitch. This is also consistent with the “dominance region” of pitch extraction, i.e. that the 3–5 
harmonics contribute most to the pitch perception (Ritsma 1967, Plomp 1967). 

Although sounds consisting of equally spaced inharmonic components have provided novel 
stimuli to test models of pitch extraction, such synthesized stimuli have been considered artificial and 
purely theoretical, as neither musical instruments nor humans can produce a sound composed of 
equally spaced inharmonic components. The dizi tones in the second and third registers bring these 
studies into practice, because they often have strong 7th, 9th, 11th and 13th harmonics. These 
“double-spaced” harmonics can evoke a weak pitch sensation besides the fundamental frequency f0. 
According to the pitch shift effect, this pitch 2f0' is not exactly an octave above the fundamental 
frequency; 2f0' ≠ 2f0. 

8.4.2 Autocorrelation model for pitch extraction and pitch strength estimation 

Although the “template-based” pitch model can predict the residue pitch of simple stimuli such 
as those presented in Fig. 8.6, this purely frequency-domain approach based on pattern matching 
provides information about the strength of the pitch 2f0' through a complex method of pattern 
matching and connection weights (Terhardt et al. 1982). In general cases I use autocorrelation 
analysis for pitch extraction and pitch strength estimation. 

Temporal correlation functions entail the multiplication of a time-series signal by another signal 
at different relative time delays. Cross-correlation entails the multiplication of two different signals, 
while autocorrelation entails the multiplication of a signal by itself. Autocorrelation models of pitch 
date back to Licklider  (1951) and have since been implemented by many others (e.g., Meddis and 
Hewitt 1991a, Cariani and Delgutte 1996a, Meddis and O’Mard 1997). 

Temporal analysis has been encouraged by physiological studies demonstrating phase locking of 
auditory-nerve fiber activity to tone period (see, e.g., Møller 2000). However, a major problem for 
autocorrelation models of pitch has always been the nature of the central neural processors that 
analyze temporally-coded information. Such neural elements, whose action would resemble temporal 
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autocorrelators, have not been observed at any level of the auditory nervous system (Schwarz and 
Tomlinson 1990), although neural representations of the autocorrelation function were suggested by 
Cariani and Delgutte (1996a, 1996b). In this sense, the autocorrelation analysis used here should be 
regarded as a tool of signal processing for demonstrating the phenomenon of multi-pitch in dizi tones 
rather than a physiologically based auditory model. 

A standard autocorrelation analysis is used here for pitch extraction. The running autocorrelation 
of a digital signal wav(t) at time t and lag 㱀 is given by 

 

∑ +∆+∆+=
i
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where 㥀t is the sample period and the summation is taken for i ranging from 1 to W/㥀t with W the 

width of the time-window. The pitch-periods are derived from peaks in this autocorrelation function 
and the peak heights reflect the pitch strengths. 

In order to demonstrate the performance of the pitch model of autocorrelation, three tones with 
6–14 harmonics were synthesized. They have different degrees of the predominance of 
odd-numbered harmonics. Fig. 8.7 shows the spectra and autocorrelation functions of these tones. 
Their fundamental frequency f0 = 500 Hz is represented as the main peak at 2 ms in the 
autocorrelation functions, whereas the two additional pitches 2f0' are represented as the pairs of peaks 
around 1 ms. It can be observed that the peak heights around 1 ms increase with the amplitude 
difference between odd- and even-numbered harmonics. This implies that the pitch strengths of the 
additional pitches 2f0' are sensitive to the average amplitude difference between odd- and 
even-numbered harmonics. Fig. 8.7 suggests that the additional pitches 2f0' are audible once the 
average amplitude difference between odd/even-numbered harmonics around the first formant is 
larger than 8 dB. 

Next to the average amplitude difference between odd- and even-numbered harmonics around 
the first formant, it is also interesting to examine whether the existence of the pitches 2f0' is sensitive 
to the formant frequency. Fig. 8.8 shows the spectra and the autocorrelation functions of three tones 
composed of four odd-numbered harmonics accumulated in different frequency ranges. It can be 
observed that the peak heights around 1 ms increase with the formant frequency. Fig. 8.8 suggests that 
only the odd-numbered harmonics predominance above 5th harmonics have contribution to the 
additional pitches 2f0'. 
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Figure 8.7: Effect of the amplitude difference between adjacent odd- and even-numbered harmonics 
on the pitches 2f0'. The upper column displays the spectra of three tones with the fundamental 
frequency f0 = 500 Hz and with the amplitude difference between odd- and even-numbered harmonics 
of 4, 8, and 12 dB. The lower column displays their autocorrelation functions. 
 

   

   
 

Figure 8.8: Effect of the center frequency of the formant of odd-numbered harmonics on the pitches 
2f0'. The upper column displays the spectra of three tones composed of four consecutive 
odd-numbered harmonics (f0 = 500 Hz). The lower column displays their autocorrelation functions. 
The peak heights around 1 ms increase and their distances decrease as the formant frequency 
increases. 
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(a)                                                                 (b) 
Figure 8.9: Alternative-polarity clicks. (a) Waveform. (b) Spectrum. 

 
The present study on the pitch perception associated with the odd-numbered harmonics 

predominance is closely related to the phenomenon of rate pitches of alternative-polarity clicks, 
whose spectra show infinite equal-amplitude odd-numbered harmonics without even-numbered 
harmonics (Fig. 8.9). When these click trains are high-pass filtered, rate pitches are strengthened 
(Flanagan and Gutman 1964). Cariani and Delgutte (1996b) explained the existence of rate pitches of 
alternative-polarity clicks in terms of their autocorrelation functions, which show split peaks around 
the rate interval. Based on the same argument, the multi-pitches of dizi tones with a predominance of 
odd-numbered harmonics also represent as split peaks in their autocorrelation functions. However, 
the pitch perception in dizi music is much more complex than that of filtered clicks, because the 
degree and the frequency region of the odd-numbered harmonics predominance varies a lot in dizi 
music and it is not straightforward to determine which pitches are audible. The phenomenon of 
multi-pitch makes the transcription of dizi solo music fairly challenging, as will be demonstrated in 
the following example. 

8.4.3 Multi-pitches in dizi solo music 

Although dominant 7th, 9th, and 11th harmonics of a dizi tone are predicted to produce pitches 
2f0', their pitch strengths seem fairly low. I myself can hear “something” above the fundamental 
frequency, but cannot judge their exact musical pitches. To determine the multi-pitches of dizi tones, 
an autocorrelation analysis for transcription is used. A transcription example is given in Figs. 8.10 and 
8.11, where notes are determined according to some “streams” in the autocorrelogram, which has its 
y-axis in the cent scale to match the lines of the soprano clef. It is important to note that these plots, 
representing the values of the running autocorrelation function, not necessarily corresponds to the 
perceived pitch strength, because there are repetitive patterns in an autocorrelation function. Details 
of the generation method of this autocorrelogram are described in Appendix A. 
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Figure 8.10: Multi-pitches in dizi solo music (excerpt from “Yiolan Fongchun”) represented in 
autocorrelogram. (a) Autocorrelogram. (b) Spectrum snapshot at 4.2 sec. The dominant 7th, 9th, and 
11th harmonics induce the pitches Bb6 and D7. (c) Spectrum snapshot at 9 sec. (d) Spectrum snapshot 
at 11.7 sec. (d) Spectrum snapshot at 12.3 sec. 
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Figure 8.11: Multi-pitches in dizi solo music (continued). 
 

Fig. 8.10 shows three types of multi-pitches. First, the autocorrelogram suggests that at 1 sec 
there is a weak pitch G6 above the prominent pitch G5. This corresponds to the spectral feature of a 
predominance of the even-numbered harmonics (for the spectrum, see Fig. 6.18). The melody ascends 
from the first register to the second register at 4 sec with the appearance of the second type of 
multi-pitches: 9f0/4 and 9f0/5 induced by dominant 7th, 9th and 11th harmonics [Fig. 8.10(b), see also 
Fig. A.4]. At 5 sec, the prominent pitch F6 is accompanied by the pitch of its strong 7th harmonic, 
which is segregated from F6 by inducing a pitch of 7f0. This belongs to the third type of multi-pitches: 
nf0. 

The long dizi tone E6 has a significant characteristic of multi-pitches 2f0', as the spectrum show 
dominant 7th, 9th and 11th harmonics [Fig. 8.10(c)]. At 11.7 second, the 7th harmonics becomes so 
outstanding that its pitch 7f0 is likely to replaces the multi-pitches 2f0' [Fig. 8.10(d)]. At the end of this 
tone, the 5th harmonic becomes outstanding so that the pitch 5f0 could be audible [Fig. 8.10(e)]. 

From 14 to 22 second, all dizi tones in the second register have the multi-pitches of 2f0', which 
are represented in the transcription as major thirds, moving parallel to the prominent pitch f0 (Fig. 
8.11). However, it seems difficult to judge their exact musical pitches by listening. 

Although the method of autocorrelogram provides a valuable tool for estimating the pitches and 

1st register 1st register 2nd register 2nd register 2nd register 
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their strengths in dizi solo music, there is a gap between the calculated multi-pitches and perceived 
multi-pitches. From a perspective of psychoacoustics, the autocorrelogram representations of 
multi-pitches demand intensive experimental studies because of low pitch strengths. Moreover, the 
method of autocorrelogram for multi-pitch transcription of dizi solo music lacks a physiological basis 
for auditory temporal coding at high frequencies. The present autocorrelation representation extends 
up to the limits of phase locking in the auditory nervous system. Therefore, a new model fusing the 
temporal and the place representation for extracting pitches from high-frequency (> 4 kHz) harmonics 
is needed. In spite of debates over the respective roles of temporal and place representations in the 
perception of pitch, it should be noted that the multi-pitches of 2f0' are also predicted by a place theory 
(see Fig. A.4). 

The multi-pitch sensation evoked by a predominance of high odd-numbered harmonics sheds 
new lights on the aspects of auditory scene analysis and timbre perception. It is generally accepted 
that a quasi-periodic complex tone consisting of frequencies nf0 evokes one single pitch f0. Yet, dizi 
tones with dominant odd-numbered harmonics around the first formant (4–6 kHz) can evoke two 
additional pitches 2f0', which are unlikely to blend with the prominent pitch f0 because 2f0' ≠ 2f0. 

Although their exact musical pitches seem perceptually ambiguous, they may play a role in timbre 
perception through stream segregation. I suggest that dizi tones with dominant odd-numbered 
harmonics around the first formant can evoke multi-streams in the auditory scene. This phenomenon 
is comparable to the multi-streams in tones of overtone-singing and Jew’s harp, which are 
characterized by a strong harmonic segregated from the fundamental frequency. However, the 
multi-pitch phenomenon of dizi tones with dominant odd-numbered harmonics at high frequencies is 
rather special, because there is no spectral component at 2f0', and maximally one component exactly at 
2nf0'. 

8.5 Conclusions 

Dizi tones in the second and third registers, characterized by weak even-numbered harmonics, 
have the hollow and/or nasal sound quality described by Helmholtz. The distinct timbre evoked by the 
spectral feature of large amplitude differences between odd-even-numbered harmonics is explained 
by analogizing it as the visual pattern of a luminance-contrasting grating in a harmonic template. 

The odd-numbered harmonics dominating at low and high frequencies have different perceptual 
effects. When this predominance occurs at high frequencies, interference between adjacent harmonics 
is reduced. This may explain that nasal dizi tones are described as sweet by musicians. Moreover, the 
predominance of odd-numbered harmonics at high frequencies can induce additional pitches 2f0' that 
enrich the texture in dizi solo music. An autocorrelation model of pitch suggests two conditions for 
the existence of the additional pitches: (1) odd-numbered harmonics must dominate in the frequency 
range above the 5th harmonics, and (2) the average amplitude difference between 
odd/even-numbered harmonics in this range must be larger than 8 dB. As these two conditions are 
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often satisfied in the dizi tones in the second and third registers but not in most tones produced by 
other musical instruments, this multi-pitch phenomenon is fairly unique to the dizi. 

Autocorrelation analysis of dizi tones with dominant odd-numbered harmonics suggests that the 
additional pitches 2f0' are major thirds moving parallel to the prominent pitch of the fundamental 
frequency f0. This prediction invites further psychoacoustic studies. 
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Chapter 9.  

Perception of subharmonics: Roughness 

Abstract 

Subharmonics at (2n-1)f0/2 (where f0 is the perceived pitch, n = 1, 2, 3...) sometimes appear in the 
dizi tones in the second octave. They do not produce another pitch one octave below, but merely 
induce a rough sound quality. Subharmonics are common in human vocalization and have been 
identified as a source of roughness. However, roughness induced by subharmonics cannot be 
explained by past psychoacoustic models and appears against the theory of consonance-dissonance. 
Roughness induced by subharmonics can be explained by taking into account the pitch-based 
grouping mechanism that integrates information across auditory channels. A qualitative model is 
proposed with two assumptions: (1) grouping components at nf0 demands a robust pitch sensation of 
f0; (2) unpleasant beatings caused by components in the same critical bands are largely reduced by 
this grouping. Since subharmonics in dizi tones at low frequencies are always much weaker than 
adjacent harmonics, the subharmonic pitch of f0/2 cannot be evoked. Therefore, the ungrouped 
subharmonics are perceived as impurities of dizi tones. 
A large dizi with a slack membrane has a strong tendency to produce rich subharmonics. Because the 
tone range of a large dizi is comparable to human singing, it is especially optimal for imitating 
human voices. Large dizi tones with subharmonics often recall melancholic voices. 

9.1 Introduction 

Chapters 7 and 8 discussed the perception of harmonics of dizi tones. This chapter accounts for 
the perception of their subharmonics, which appear between spectral lines of harmonics in the 
spectrum. The frequencies of subharmonics are multiples of a fraction of the fundamental frequency 
f0. Subharmonics with frequencies (2n-1)f0/2 can appear in dizi tones in the second play mode, while 
subharmonics with frequencies (3n-1)f0/3 and (3n-2)f0/3 can appear in dizi tones in the third play 
mode. 
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The occurrence of subharmonics is of perceptual importance only for membrane flutes, because 
membrane-less flutes are not able to produce high-frequency subharmonics (see Fig. 6.5). For the dizi 
tones played in the third mode, the membrane is always located near a pressure node of the 
fundamental, so that the dizi behaves like a membrane-less flute. Subharmonics with frequencies 
(3n-1)f0/3 and (3n-2)f0/3 are thus very weak at high frequencies and have little perceptual effect. For 
this reason, this chapter focuses on the perception of the subharmonics with frequencies (2n-1)f0/2 in 
the dizi tones in the third register. 

In comparison with harmonics, subharmonics in musical tones have attracted little attention 
from musical acousticians. While physicists and musicians have explored subharmonics produced by 
bowed string instruments (Lauterborn 1996, Kimura 1999), brass and reed instruments (Gibiat and 
Castellengo 2000), no research on timbre spaces has mentioned the contribution of subharmonics to 
musical timbres. 

The perception of subharmonics in natural sounds has mainly been studied within the 
framework of speech research. Voice clinicians have identified subharmonics as a source of 
roughness in human voices (e.g., Omori et al. 1997). In the field of music perception, stationary violin 
tones with subharmonics were related to an auditory attribute similar to roughness: rustle (Stepanek 
and Otcenasek 1999). However, few investigations have related the perception of rough voices with 
subharmonics to psychoacoustic models of roughness. A computational study based on Aures’ (1985) 
model of roughness showed a medium correlation between computed roughness and perceived 
roughness. This result highlighted the gap between psychoacoustic research using synthesized stimuli 
and the perception of natural rough sounds such as pathological human voices. 

The goal of this chapter is to indicate the failure of past psychoacoustic models and to provide a 
new model based on a grouping mechanism in auditory scene analysis. Section 9.2 gives a general 
review of auditory roughness and difficulties of relevant psychoacoustic models. Section 9.3 
addresses the methods and results of a preliminary experiment, which was designed to show that no 
existing psychoacoustic models could explain roughness induced by subharmonics. A qualitative 
model of roughness induced by subharmonics is described in section 9.4. Section 9.5 discusses the 
role of subharmonics in dizi music. 

9.2 Roughness: models and difficulties 

9.2.1 Psychoacoustic models and neurophysiological evidence 

In psychoacoustics, roughness is an important parameter that induces unpleasant qualities of a 
sound. Since its introduction by Helmholtz (1877), roughness has been considered to be due to rapid 
beatings in auditory channels, or critical bands. He explained the perception of dissonances in 
Western music in terms of roughness evoked by adjacent harmonics of two simultaneously sounding 
musical tones. The consonant relations were viewed as exceptional cases, when either no or very few 
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beatings were produced. 
Psychoacoustic experiments on roughness have been performed using various types of 

synthesized sounds. Using simultaneous pure-tone pairs stimuli, Plomp and Levelt (1965) plotted an 
idealized curve of the relationship between consonance and critical bandwidth. This curve serves as 
the basis of curve-mapping models of roughness, which are confined in the frequency-domain. 

In contrast to curve-mapping models, auditory models of roughness rely on auditory processing 
and provide an explanatory model for roughness. Several calculation procedures have been developed 
(Aures 1985, Daniel and Weber 1997, Leman 2000), which work in both the frequency- and 
time-domains. The former corresponds to the activation patterns on the basilar membrane, while the 
latter corresponds to the total firing rate of auditory nerves, which is phase-locked to stimulus 
components in auditory channels (see, e.g., Møller 2000). 

Recent progress on the search for the physiological basis of roughness mainly concerned 
temporal coding at various levels of the auditory nervous system. Tramo et al. (1992, 2000) found a 
correlate of roughness in the temporal discharge patterns of auditory nerve fibers. McKinney et al. 
(2001) explored the response of neurons in inferior colliculus to musical intervals. They found that 
dissonance correlated qualitatively with rate fluctuations of inferior colliculus neurons, demonstrating 
Helmholtz’s (1877) hypothesis that dissonance tended to induce intermittent responses in auditory 
nerve fibers. 

Neural representation of roughness has also been found in higher levels of the auditory pathway, 
including the auditory cortex (for a review, see Langner 1992). Physiological studies of responses to 
periodic stimuli in the primary auditory cortex have generally reported or implied limiting rates of 
phase-locking that are considerably lower than psychoacoustic values of the upper limit of roughness 
perception (e.g., Gaese and Ostwald 1995, Eggermont 1998). Suggesting that this discrepancy may 
stem from the use of anesthetized animals, Fishman et al. (2000) measured neural responses in 
primary auditory cortex of an awake macaque monkey. They used stimuli consisting of three 
consecutive harmonics of fundamental frequency f0 ranging from 25 to 4000 Hz and found that in the 
thalamo-recipient zone, the stimulus f0 at which phase-locking was maximal increased with the best 
frequency and reached an upper limit of between 75 and 150 Hz for the best frequency greater than 
about 3 kHz.  These physiological relationships parallel psychoacoustic data that showed the 
roughness of an amplitude-modulated tone with a carrier frequency 1 kHz reached its maximum near 
modulation frequencies of 70 Hz (Zwicker and Fastl 1990). However, such phase-locked firing 
patterns should be explained no more than maintenance of temporal information at lower levels of 
auditory processing. Its correlation to the unpleasant sensation associated with dissonance or 
roughness, which is likely coded in the prefrontal cortex, remains to be demonstrated. 

Tramo et al. (2001) studied the effects of auditory cortex lesions on the discrimination of 
roughness, consonance-dissonance and pitch. A patient with infarcts in the auditory cortex, MHS, had 
difficulty in consonance-dissonance discrimination, but his performance of roughness discrimination 
of two simultaneous pure tones was normal. As MHS also had difficulty in frequency discrimination, 
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it was concluded that MHS’s impaired consonance-dissonance perception was due to impairment in 
pitch perception but not roughness perception. The authors thus suggested that pitch relationships 
influence harmony perception in the vertical dimension with roughness playing a secondary role. 

In summary, some of recent physiological data recorded at various levels of the auditory 
pathway have been interpreted as neural representations of psychoacoustic roughness. However, the 
correlation between the fluctuating, phase-locked neural activity and the unpleasant sensation of 
roughness remains to be clarified. A case study of brain lesion in the auditory cortex showed a 
disassociation between harmony perception and roughness, thus invalidating both Helmholtz’s theory 
of dissonance and neural representations of roughness. 

9.2.2 Pleasant beatings in dizi music 

As the aspect of roughness was developed to explain the perception of harmony in Western 
music, it would not be surprising that a comparative approach can give evidence against a universal, 
biologically-based explanation of the sensation of roughness. The perception of amplitude-modulated 
sounds can be culture- and context-dependent, as pleasant beating-like sounds prevail in non-Western 
music. For instance, beatings in gong tones are essential in gamelan music (Gomperts 1995). 

In flute music, beating-like sounds can easily be produced with flutter tonguing. Fig. 9.1(a) 
shows the amplitude envelopes of harmonics and subharmonics of a flutter tongued bangdi tone. The 
amplitude envelope of the fundamental shows 25% amplitude modulation with the modulation 
frequency of 40 Hz. Most of other components have the same modulation frequency but are nearly 
100% modulated. This effect, in line with Worman’s theorem (section 5.3), is also represented as the 
widening of spectral lines of high-frequency components in Fig. 9.1(b). 
 

 
(a)                                                                            (b) 

Figure 9.1: Amplitude-modulations in a fluttering tongued flute tone produced by the bangdi in F. 
The fundamental frequency is about 1397 Hz. (a) Amplitude envelop of the lowest 10 harmonics and 
subharmonics of this tone. The amplitude modulation frequency of the fundamental is about 40 Hz. (b) 
Spectrum of this tone. 
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Although the physical mechanism correlated to different amounts of amplitude-modulation of 
harmonics is unknown, from a psychoacoustic perspective, it is clear that a high value of auditory 
roughness is inherent of fluttering tongued dizi tones. The fact that amplitude-modulated bangdi tones 
sound fairly pleasant and exciting for Chinese audience places current psychoacoustic theories of 
roughness in doubt. It is very important to note that in Western flute music, the use of flutter tonguing 
tends to be confined to contemporary music, whereas it is one of the backbone techniques in the 
Northern style of dizi music. As fluttering tongued flute tones are more favored in membrane flute 
music, amplitude-modulated high harmonics produced by the membrane may play a role in evoking a 
pleasant sensation in a beating-like tone. 

In traditional dizi music the use of flutter tonguing is restricted in the bangdi (Chinese “piccolo”), 
while musicians consider flutter tongued tones of larger dizi as “ineffective”. It seems that the spacing 
between harmonics – the pitch – is important in the perception of fluttering tongued flute tones. This 
might be related to that widened spectral lines of harmonics start to overlap each other when the 
fundamental is lower than a threshold (f0 < 400 Hz, for instance). A “dirty” timbre associated with 
low-pitch tongued dizi tones may arise from a spectral “continuum” at high frequencies. 

9.2.3 Pleasant beatings in voices 

In addition to amplitude-modulated musical tones, another example of “pleasant beats” in 
auditory channels can be found in low-pitch male voices. According to psychoacousticians, a voice 
with fundamental frequency below 200 Hz can elicit roughness, since its adjacent upper harmonics 
can induce fluctuation of the temporal envelop in auditory channels. However, such rich-harmonics 
low-pitch voices are not rough according to voice clinicians and audiences. In singing practice, the 
voices of a professional bass singer are characterized by a strong formant at about 3 kHz, the singer’s 
formant. In this frequency region, the critical bandwidth is about 400–600 Hz. Consequently, if the 
pitch of a singing voice is below 200 Hz, the harmonics unresolved by auditory channels could give 
the voice a rough sound quality. Regarding this unpleasant quality, a bass should reduce the strength 
of the singer’s formant when he sings low notes. However, no such a technique has been reported. By 
contrast, the audience favors bright bass voices rather than rather than dull ones that are free of 
roughness.  

9.2.4 Unpleasant consonance: Roughness induced by subharmonics 

 Despite a plethora of calculation models of roughness, these models encounter difficulties when 
applied to human voices. Roughness as an indicator of pathological voices has been extensively 
studied and scored by clinicians. A serious conflict between psychoacoustic and clinical studies of 
human voices can be found in a specific type of roughness: roughness induced by subharmonics. 

Since the discovery of subharmonics in human voices (Dejonckere and Lebacq 1983), this 
phenomenon has been related to the period doubling scenario in non-linear dynamical systems 
(Feigenbaum 1978) and has been studied through two-mass models of the glottis (Herzel 1993, 
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Steinecke and Herzel 1995, Mergell et al. 2000). 
Subharmonics in human voices shed new light on the perception of pitch and roughness. When 

subharmonics with frequencies (2n-1)f0/2 appear in a voice, they seldom make the pitch an octave 
lower. Instead, they merely introduce a rough sound quality to it. Fig. 9.2 gives the waveform of a 
human voice around the period-doubling bifurcation, comparing the spectra before and after the 
bifurcation. Perceptually, the period-doubling bifurcation introduced a rough quality to this voice. It 
should be noted that low subharmonics are noticeably weaker than adjacent harmonics, whereas high 
subharmonics are comparable to their adjacent harmonics in magnitude. This spectral characteristic 
also exists in dizi tones with subharmonics [see Figs. 3.6(b), 6.5 (b), 6.13(c), 9.1(b), 9.8(a), 9.9]. 

 
 

 

 
(b)                                                                         (c) 

Figure 9.2: Subharmonics in a human voice. (a) Waveform of this voice around a period-doubling 
bifurcation. (b) Spectrum of the voice before the bifurcation. (c) Spectrum of the voice after the 
bifurcation. Subharmonics emerge at midpoints of pairs of adjacent harmonics. Note that the lowest 
two subharmonics are noticeably weaker than adjacent harmonics. 

 

Bifurcation 
▼ 

(a) 

0               0.1               0.2              0.3                0.4               0.5               0.6               0.7   (sec) 
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Figure 9.3: Human voices with subharmonics. (a) G3. (b) F4. (c) C5. 

 
Fig. 9.3 gives three spectrograms of human voices with subharmonics and the corresponding 

musical notes. The prominent pitch f0 is represented as the lowest strong spectral component in each 
spectrogram (marked with an arrow).  The space between harmonics (with frequencies nf0) is divided 
by subharmonics. In Fig. 9.3(a), the frequencies of all subharmonics (2n-1)f0/2 are integer multiples 
of the “subharmonic fundamental” f0/2. Therefore, a sudden appearance of these subharmonics could 
be regarded as adding a tone one octave below to the voice. Similarly, the appearance of frequencies 
(3n-1)f0/3 and (3n-2)f0/3 could be regarded as the addition of a tone a twelfth below [Fig. 9.3(b)]. 

Roughness induced by subharmonics seriously contradicts the music theory of 
consonance-dissonance. The frequencies of subharmonics in a voice are always multiples of a low 
integer fraction of the fundamental frequency, such as f0/2, f0/3, f0/4, even f0/6 [Fig. 9.3(c)]. As the 
corresponding subharmonic pitches and the fundamental pitches strictly stand in simple integer ratios 
1:n, it is a puzzle that such “consonances” in voices are characterized by a rough sound quality. 

9.2.5 Failure of psychoacoustic models in roughness calculation 

In phoniatrics, several indicators have been used for describing pathological voice quality, 
including roughness, breathiness and hoarseness. It is interesting to compare psychoacoustic 
roughness with the evaluation of roughness in speech research. Roughness has been related to 
‘aperiodicity features’ of human voices (e.g., Arends et al. 1990, Dejonckere 1995), which arise from 
the glottis’ instability. Changes in the waveform shape between glottal cycles can be measured by the 
correlation coefficient calculated for all pairs of successive cycles. Various perturbation measures 
have been provided, such as jitter (variations of pitch) and shimmer (variations of amplitude). This 
perturbation measures approach parallels the evaluations of psychoacoustic roughness in 
amplitude-modulated tones and frequency-modulated tones. 

Roughness evaluations of human voices have provided new data for examining psychoacoustic 
models of roughness. In Reuter’s (2000) dissertation, both perturbation analysis and a psychoacoustic 

200Hz 
355Hz 

525Hz 

(a) (b) (c) 
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model of roughness were applied to pathological voices which show subharmonics, biphonation or 
deterministic chaos. The degrees of roughness, breathiness and hoarseness of these voices had been 
rated by clinicians. Computer programs based on perturbation analysis and a psychoacoustic model 
(Aures 1985) of roughness were written to compute roughness of these voices. It was a striking 
finding that both the perturbation analysis and the psychoacoustic model performed poorly; computed 
results showed a medium correlation to the perceived roughness. 

The empirical finding of roughness induced by subharmonics in voices suggests that some 
essential factors in roughness perception were not considered in psychoacoustic models. A 
preliminary experiment was designed to demonstrate that no existing psychoacoustic theory could 
explain roughness induced by subharmonics. 

9.3 Experimental study 

9.3.1 Method 

Two periodic complex tones S1 and S2 were synthesized by a PC computer with the same 
duration of 1 second and period 2/f0 = 220 Hz. Their spectra are given in Fig. 9.4. Both stimuli contain 
15 harmonics nf0 and 15 subharmonics (2n-1)f0/2, for n ranging from 1 to 15. The harmonics envelope 
has a constant slope of 2 dB/rank. The subharmonics  (2n-1)f0/2 for n > 2 also have the same envelop 
slope but their amplitude is 10 dB smaller than their left adjacent harmonics. 

Stimulus S1 differs from Stimulus S2 in having stronger components at f0/2 and 3f0/2. The 
component at f0/2 of Stimulus S1 is 12 dB stronger than the components at f0, and its component at 
3f0/2 follows the envelope slope of harmonics. In S2, the first subharmonic vanishes and the second 
subharmonic follows the envelop slope of subharmonics at higher frequencies. 

 
(a)                                                                         (b) 

Figure 9.4: Spectra of the two stimuli used in the perceptual experiment. Stimulus S1 differs from 
Stimulus S2 in having stronger components f0/2 and 3f0/2. 

 

S1 S2 
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Subjects are 16 Taiwanese with ages ranging from 22 to 32 years. They are either students at the 
Conservatoire or amateur musicians. Stimuli S1 and S2 were presented with a 0.1 second pause. After 
listening to the two tones, subjects were asked to compare their impurity and pitch. The first question 
was two-alternative forced-choice: “which tone contains more impurities?” The second question for 
pitch comparison contained three options: (1) S1 and S2 are equal-pitch, (2) the pitch of S2 is an 
octave higher than S1, and (3) others. 

9.3.2 Results and discussion 

Experimental results showed that S2 has higher values of pitch and roughness than S1. For the 
task of roughness comparison, 13 of the 16 subjects reported that S2 contained more impurities than 
S1. For the task of pitch comparison, 14 of the 16 subjects reported that S2 was an octave higher than 
S1. The results showed a high inter-subject agreement. 

 

 
 

(a)                                                                       (b) 
Figure 9.5: Experimental results of roughness and pitch comparisons for S1 and S2. 

 
The fact that S2 sounds rougher than S1 contradicts past psychoacoustic models of roughness, 

because S2 was made from S1 by reducing the frequencies f0/2 and 3f0/2. This experiment also 
indicates that roughness induced by subharmonics cannot be explained in terms of additional 
interference between components introduced by subharmonics. It has been suggested that when 
subharmonics exist in the source waveform, roughness is likely to be perceived because the 
fundamental and a subharmonic are in a critical band (Bergan and Titze 2001). This hypothesis 
ignores the fact that the lowest two subharmonics in speech and music are always weak and resolved 
by auditory channels; the increases in interference introduced by subharmonics are more important at 
higher frequencies than at lower frequencies, as high subharmonics and harmonics are unresolved by 
auditory channels. However, as S1 contains as many unresolved components as S2, according to 
existing models of roughness, they should have the same roughness. The present experimental results 
suggest that roughness increase is not due to the interference increases introduced by subharmonics. 
Note that the stimuli used here were strictly stationary. This is in sharp contrast to amplitude- or 

S2>S1            S1>S2 S2=S1+Octave        S2=S1             Others 

Impurity Pitch 
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frequency-modulated stimuli used in psychoacoustic and phoniatric research on roughness (Bergan 
and Titze 2001) but in line with a study of the “rustle” quality induced by stationary violin tones with 
subharmonics (Stepanek and Otcenasek 1999). 

Roughness of the low-pitch tone S1 appears to be overestimated by psychoacoustic models of 
roughness. As mentioned in section 9.2.3, low-pitch natural tones do not sound rough, even when 
they contain rich unresolved components. The strong component f0/2 in S1 may reduce interference 
among unresolved components at high frequencies through an integration mechanism across auditory 
channels. Note that S2 sounds an octave higher than S1; the strong component f0/2 in S2 also 
contributes to the pitch sensation f0/2. The correlation between low roughness and the strong pitch 
sensation of f0/2 in S1 leads to a hypothesis that when the pitch strength of f0/2 is high, interference 
induced by components (2n-1)f0/2 is reduced. This assumption implies a mechanism integrating 
information across auditory channels. In the next section this mechanism will be identified as a 
grouping mechanism in auditory scene analysis. 

The experimental result comparing pitches reveals the crucial role of the two lowest 
subharmonics f0/2 and 3f0/2 in pitch extraction. For most periodic complex tones, the removal of the 
fundamental seldom affects their pitches. However, if the components  (2n-1)f0/2 are weaker than 
nf0  – a spectral feature characteristic of natural tones containing subharmonics – the pitch is sensitive 
to the amplitude of the frequencies f0/2 and 3f0/2. 

When the subharmonic pitch f0/2 competes with the pitch f0, the task of rating their pitch 
strengths is not easily accomplished by means of the pitch models in frequency-domain, because there 
is no straightforward criterion for determining whether the harmonic templates of f0 or f0/2 fit the 
spectral lines better. The approach of autocorrelation analysis is more suitable for pitch strength 
estimations and comparisons. 

In order to demonstrate the performance of autocorrelation functions in pitch strength 
estimations, two subsidiary complex tones S0 and S3 were synthesized, whose spectra are given in 
Fig. 9.6. These two tones are complex tones with a constant spectral slope. Fig. 9.7 compares their 
autocorrelation functions with those of S1 and S2.5 It can be observed that the autocorrelation 
functions of S0 and S1 are similar in having a peak at the pitch period 2/f0 [Fig. 9.7(a)]; hence, their 
pitches are both f0/2. By contrast, the autocorrelation functions of S2 and S3 shown in Fig. 9.7(b) have 
peaks at the pitch periods 2/f0  (marked with ‘◊’) and 1/f0  (marked with ‘▽’). Because the first peak 
corresponds to the pitch f0, the pitch of S2 and S3 is f0. This was borne out in the experimental result. 

                                                      
5 Before autocorrelation analysis, these four sounds had been passed through a filter described in Appendix A. 
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(a)                                                             (b) 

Figure 9.6: Spectra of two complex tones with a constant spectral slope 2 dB/rank. (a) S0 with the 
fundamental frequency 220 Hz. (b) S3 with the fundamental frequency 440 Hz. 
 

 
(a)                                                              (b) 

Figure 9.7: Representation of pitch strengths of f0 (‘◊’) and f0/2 (‘▽’) in autocorrelation functions. (a) 
Comparison between the autocorrelation functions of the tones S0 and S1. The pitch f0/2 = 220 Hz is 
more robust than f0 = 440 Hz, as the first peak of their autocorrelation functions lies at 2/f0. (b) 
Comparison of the autocorrelation functions of the tones S3 and S2. The pitch f0 = 440 Hz is more 
robust than f0/2 = 220 Hz, as the first peak of their autocorrelation functions lies at 1/f0. 

9.4 Modeling roughness induced by subharmonics 

9.4.1 Auditory scene analysis and grouping mechanisms 

Roughness induced by subharmonics can be explained by taking into account grouping 
mechanisms in auditory scene analysis. The aspect of “auditory scene analysis” (Bregman 1990) 
deals with the organization of auditory scene which breaks a sound mixture into elements and 
‘unifies’ proximate elements into discrete objects. As sounds rarely occur in isolation, auditory scene 

S0 S3 
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analysis is important in the identification of sound objects. The analysis process consists of two 
conceptually distinct stages. In the first stage, sound is decomposed into a collection of sensory 
elements. Subsequently, elements that are likely to have arisen from the same acoustic source are 
grouped to form a perceptual whole, or ‘stream’. 

Group mechanisms in auditory scene analysis are considered to be governed by some ‘grouping 
rules’ such as common onset/offset, amplitude/frequency modulation, harmonicity and spatial 
location. Regarding the grouping rule of harmonicity, I assume a subsidiary rule for grouping: 
spectral components nf0 are grouped only when the pitch sensation of f0 is robust enough. In the other 
words, if the pitch strength of f0 is low, components with frequencies nf0 will not be grouped despite 
their harmonicity. This assumption highlights the ecological role of the pitch perception: when a lot of 
harmonic components reach the ears, a robust pitch sensation emerges in the auditory system in order 
to group them as a single entity. 

Another assumption in my model is that interference between components lying in the same 
auditory channels will be largely reduced once these components are grouped. This assumption is 
suggested by the roughness of low-pitch male voices. As discussed in section 9.2.3, the values of 
auditory roughness in low-pitch male voices are generally overestimated by pyschoacoustic models 
of roughness. Interference between rich harmonics of low-pitch male voices may be reduced by the 
grouping mechanism according to pitch. 

9.4.2 Model description 

Based on these two assumptions, a qualitative model of roughness induced by subharmonics is 
proposed, which is schematically depicted in Fig. 9.8. This model consists of three steps: (1) pitch 
extraction, (2) sifting with a harmonic sieve, and (3) grouping and perception of 
harmonics/subharmonics. 

9.4.2.1 Stage 1: Pitch extraction by autocorrelation analysis 

The definition of subharmonics and harmonics demands a definition of pitch, which is not 
obvious when the subharmonic pitch f0/2 competes with the pitch f0. The subharmonic pitch is seldom 
perceived because of its low pitch strength. As subharmonics at low frequencies are much weaker 
than adjacent harmonics, they cannot evoke a robust subharmonic pitch. At high frequencies, 
subharmonics are comparable to adjacent harmonics in amplitude. However, their ranks are too high 
to contribute to the sensation of the subharmonics pitch. In Fig. 9.8(a), for instance, the subharmonics 
above 15f0/2 are noticeable. But their frequencies are much higher than the dominance region for 
pitch extraction, i.e. 3f0/2 to 5f0/2 (Ritsma 1967, Plomp 1967). Weakness of the subharmonic pitch 
can also be seen from its autocorrelation function [Fig. 9.8(b)], where the first peak lies at 1/f0 
(marked with ‘▼’). Since the second peak at 2/f0 is only slightly higher than the first peak, the strength 
of the subharmonics pitch is fairly low. 
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Figure 9.8: Model of roughness induced by subharmonics. (a) Spectrum of a dizi tone. (b) 
Autocorrelation function. (c) Spectrum of subharmonics of the dizi tone. (d) Spectrum of harmonics of 
the dizi tone. (e) Harmonics grouped as a single auditory entity. 
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9.4.2.2 Stage 2: Sifting with harmonic sieve 

In this stage a harmonic sieve is constructed according to the pitch f0. I follow recent models for 
computational auditory scene analysis to use autocorrelation analysis for f0 extraction (Brown and 
Cooke 1994, Ellis 1996). This harmonic sieve consists of a series of harmonic “holes” at nf0. 
Harmonics pass the sieve [Fig. 9.8(d)] while subharmonics are rejected by it [Fig. 9.8(c)]. 

9.4.2.3 Stage 3: Grouping and perception of harmonics/subharmonics 

In the final step, the components passing the harmonic sieve are grouped as a single entity [Fig. 
9.8(e)] and the unpleasant beatings between them are largely reduced. Therefore, the grouped 
harmonics of a rough dizi tone are not the main source of roughness. Rejected by the harmonic sieve, 
subharmonics remain ungrouped and evoke many entities in the auditory scene. They are perceived as 
the impurities of the sound. 

9.4.3 Implications for future research 

Although subharmonics are not grouped by a robust subharmonic pitch, they are not segregated 
from the sound object composed of grouped harmonics. Instead, subharmonics merely add impurities 
to this sound. This aspect appears to differ from the stream segregation in auditory scene analysis, 
where ungrouped components are separated from grouped components. In the perception of natural 
sounds with subharmonics, the auditory system still recognizes that both harmonics and 
subharmonics have arisen from the same source, possibly through a higher-order grouping based on 
learning. Since we often hear sounds with subharmonics emitted from one oscillator such as the 
glottis and musical instruments, the auditory system may have learned to bind subharmonics with 
harmonics. 

9.5 Subharmonics in large dizi music 

9.5.1 Subharmonic generation of the large dizi 

The dizi tones in the third register are characterized by subharmonics. It is important to note that 
the generation of subharmonic depends on both the embouchure and the instrument. The amplitude of 
subharmonics in a dizi tone varies with the embouchure. A skillful musician can produce 
subharmonics-less dizi tones in the third register when rough tones are not desired. Nevertheless, 
there is a strong tendency for subharmonics to appear in the large dizi. It seems that musicians are not 
able to avoid producing subharmonics in soft tones in the third register when they play a large dizi 
with a slack membrane. Consequently, large dizi music is more characterized by a rough timbre than 
qudi or bangdi music. 

A further reason for the importance of subharmonics in large dizi music is that the subharmonics 
in tones produced by smaller dizi result in a very annoying timbre because their spectral lines are 
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widened. It was reported in section 4.4.2 that impedance measurements on the qudi in C showed 
octave stretching for some fingerings. Because the first and second bore resonances for these 
fingerings do not stand in the ratio 1:2, when both modes are excited, the spectral lines of 
subharmonics are widened (see sections 3.4 and 6.4). The corresponding sound quality, 
distinguishable from roughness, is described by musicians as “sandy”. This fairly unpleasant sound 
quality is generally avoided in qudi and bangdi music. In the large dizi, the spectral lines of 
subharmonics are not significantly widened, and the rough quality is appreciated in musical contexts 
when it is used appropriately. 

9.5.2 Perception of subharmonics in large dizi music 

Although rough large dizi tones with subharmonics always sound unpleasant because they 
contain impurities, they are optimal for imitating melancholic human voices. The appearance of 
subharmonics is a characteristic of pathological voices. But healthy humans with excessive emotional 
stress can also produce voices with subharmonics. For this reason rough singing has been used for 
emotional expressions in jazz music [see Fig. 9.9(a)] and Russian lament (Mazo et al. 1995). 

The large dizi tones in the third register are optimal for imitating human voices with 
subharmonics, because their pitches are low enough to arouse an association with human singing. 
Examples in large dizi music imitating melancholic singing include “Weeping Flower” and “Double 
Rhyme Hatred”. Subharmonics in dizi tones play a crucial role in producing the rough timbre of a 
weeping-like voice. 

The large dizi has opened a new page in the history of dizi music, as it matches the traditional 
Chinese literati culture particularly well (Lin 1997). Some recent compositions for the large dizi, such 
as  “A Wonderful Melody of Mountain Langye” and “Listening to Spring”, show a philosophical 
impression similar to Qin music. In contrast to modern qudi and bangdi music, these three pieces are 
lightly accompanied and the tempo is slow. During a performance, the listener concentrates on 
nuances in timbre. Subharmonics as impurities can enrich the texture of large dizi tones. 

 
Figure 9.9: Musical tones with subharmonics. (a) The saxophone. Spectral lines of harmonics are 
marked with ‘o’. (b) The large dizi.  

(a) (b) 
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For the dizi tones in the third register, roughness induced by subharmonics is sometimes 
combined with the multi-pitch effect due to the predominance of odd-numbered harmonics. Fig. 9.9 
shows the spectrum of a large dizi tone, which is dominated by odd-numbered harmonics and contains 
subharmonics. As the 7th, 9th, and 11th, harmonics are much stronger than the adjacent 
even-numbered harmonics, the multi-pitches 2f0' may be audible (see section 8.4). They combine with 
the impure subharmonics to produce multiple streams in the auditory scene. 

9.6 Conclusions 

Subharmonics with frequencies (2n-1)f0/2 in the dizi tones in the third register induce a rough 
sound quality. Such rough sounds shed new light on auditory scene analysis by introducing the notion 
of auditory impurity; a sound with subharmonics is perceived as a “pure” part plus impurities. As 
impurities, subharmonics are segregated from the “pure” part of the sound composed of harmonics, 
but still bound to it through a higher-order grouping. 

Subharmonics are more important in larger dizi. Because the tone range of a large dizi is 
comparable to human singing, it is especially optimal for imitating human voices. Subharmonics in 
large dizi tones often recall melancholic voices. 
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Chapter 10.  

Conclusions 

10.1 Physics of the dizi 

The object of this thesis was the Chinese membrane flute, the dizi, which has a membrane 
covering a hole in the wall of its resonator. Studies in the mechanics of the dizi  have explained the 
importance of the tension and wrinkles in the membrane in producing a beautiful, bright dizi timbre, 
which enables the dizi to ‘cut through’ the sound of even large ensembles. Investigations on the linear 
and non-linear properties of the dizi have provided insights into the physics of this membrane flute: 
the membrane gives a rich spectral content to the flute at the expense of pitch range. 

10.1.1 Impedance correlates of dizi tone range 

The linear behavior of the dizi was studied by modeling its membrane as a piston. Impedance 
measurements gave typical values of parameters in the piston model: the resonant frequency 2 kHz < 
fm < 3 kHz, the effective acoustic mass m of the order of 10-6 kg, and the damping coefficient R of the 
order of 10–3 kg/sec. 

Input impedance calculations of the dizi resonator, a pipe-membrane system, showed some 
phenomena common in soundboard-string systems. In the case of the membrane located at the middle 
of the pipe, it does not affect the even-numbered bore resonances, as it is located at pressure nodes of 
the corresponding standing waves. On the other hand, the odd-numbered bore resonances are shifted 
away from fm and their admittances are reduced by the membrane, as it is located at a pressure 
antinode of the corresponding standing waves (see Fig. 4.5). Admittance reductions were found to be 
significant for the bore resonances close to the membrane’s resonant frequency fm. 

Resonance shifts and admittance reductions predicted by the linear piston model quantitatively 
agreed with the results of experiments on a simple pipe-membrane system at low frequencies (< fm). 
Impedance measurements of the qudi in C showed resonance shifts caused by the membrane of up to 
60 cents. It was also found that admittances of its bore resonances of the qudi in C supporting the 
notes B6 and C7 were largely reduced by the membrane. Since the vibration modes of the 
pipe-membrane resonator are damped by the membrane for resonances close to fm, the typical dizi 
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tone range is restricted to two octaves plus two notes. 

10.1.2 Membrane-wrinkling correlates of dizi timbre and playability 

The nonlinear behavior and wrinkling of a dizi membrane, essential to production of the 
characteristic dizi timbre (Thrasher 2001), were studied theoretically and experimentally. The motion 
of the wrinkled membrane can be described as a series of strings, whose behavior is fairly linear until 
the tension increases for large deformations. Theoretical calculation suggested that a wrinkled 
membrane has a higher initial tension (4N0) than a membrane with an isotropic initial tension (N0) for 
the same resonant frequency. Wrinkling reduces the cubic non-linearity of the membrane by 
decoupling the strings and allowing them to have a high initial tension. 

The existence of the membrane’s non-linearity was demonstrated by driving it with sinusoidal 
acoustic waves strong enough to induce its harmonic generation. Relations between the magnitudes of 
the lowest three harmonics revealed a predominance of cubic non-linearity for an unwrinkled 
membrane, and a predominance of quadric non-linearity for a wrinkled membrane in an intensity 
range of the driving signals. The membrane’s response curves showed the frequency-pulling effect 
characteristic of a hardening spring. A jump phenomenon was observed in the multi-valued response 
curve of a slack, unwrinkled membrane. In an impedance calculation, the membrane with a 
large/small jump was approximated as a linear oscillator with a large/small damping coefficient. The 
large damping could lead to admittance reductions of the bore resonances supporting notes for which 
the membrane is located near a pressure antinode of the fundamental. 

The main effect of wrinkling is to make the membrane behave more linearly by reducing the 
cubic non-linearity. If the membrane is unwrinkled due to an isotropic initial tension, the spring 
constant will be too high for a high initial strain so that the membrane hardly vibrates, or, the cubic 
non-linearity will be too high for a low initial strain. In the latter case, a jump phenomenon in the 
response curve of the membrane can lead to hysteresis and discontinuous behavior of the dizi: for the 
same fingering it either does not sound, or sounds raucously. Wrinkling largely stabilizes its sound 
production. 

10.1.3 Non-linear mechanism correlates of spectral features of dizi tones 

The dizi membrane was modeled as a Duffing oscillator driven by acoustic waves in the tube. 
This model successfully explained three major spectral features of dizi tones: (1) first formant, (2) 
predominance of odd-numbered harmonics, and (3) subharmonics at high frequencies. It was tested 
by two kinds of quasi-sinusoidal tones driving the membrane: tones generated by external excitation 
or by blowing the instrument. The dizi tones for which the membrane is located near a pressure node 
of the second harmonic wave were simulated with the motion equation of the membrane: 
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where 
0>β ,  10 GG >>   and  20 GG >> . 

 
For external excitation, the phase plots of the membrane showed interlocking spirals, which 

were predicted by this quasi-sinusoidally driven Duffing oscillator model. For normal dizi tones, the 
phase plots of the membrane also showed similar interlocking spirals, but rich harmonics above 10 
kHz in dizi tones did not appear in simulated spectra. 

The Duffing oscillator model of the dizi membrane can explain why the spectral features of dizi 
tones vary with pitch. According to spectral characteristics, the dizi tone range is divided into five 
registers. The upper notes of the first octave are characterized by a predominance of odd-numbered 
harmonics, and therefore the first octave is divided into two registers. In the first register, the 
membrane is located near a pressure antinode of the acoustic wave of the second harmonic, thus 
driven by both the fundamental and the second harmonic. That is why the radiating sounds contain 
both odd-numbered and even-numbered harmonics. On the other hand, for the dizi tones in the second 
register, the membrane is located at a pressure node of the second harmonic wave. Because the force 
driving the membrane is quasi-sinusoidal, this Duffing oscillator produces tones with dominant 
odd-numbered harmonics. 

In the third register (lower notes of the second octave), in addition to a predominance of 
odd-numbered harmonics, subharmonics (2n-1)f0/2 may appear. Subharmonics at high frequencies 
stem from the subharmonic force G2cos(㲐t/2) exerted on the membrane, which is due to the 

excitement of the first mode of the air column. For a membrane-less flute, the subharmonics  
(2n-1)f0/2 are restricted to low frequencies. For a membrane flute, rich high-frequency subharmonics 
are generated by the non-linear membrane under the weak subharmonic force G2cos(㲐t/2) combined 
with the strong fundamental force G0cos(㲐t). 

The fourth register (upper notes of the second octave) is characterized by the absence of high 
harmonics because the membrane is located near a pressure node of the fundamental, whereas the 
fifth register (lower notes of the third octave) is characterized by a dramatic recovery of high 
harmonics because the membrane is located near a pressure antinode of the fundamental. 

Dizi tones in the lowest three registers always have two formants, typically centered at 4–6 kHz 
and 10–14 kHz. Numerical simulations successfully predicted that the first formant frequency 
increases with the tone intensity, but failed to explain the harmonics above 10 kHz. The second 
formant reveals the filtering effect of the lowest transverse pipe mode with the resonance estimated as 
c/2D (D is the pipe’s diameter). 

10.2 Perception of dizi tones 

The timbre of dizi has been studied in terms of its static spectral features. The global pattern of 
spectral envelopes of dizi tones, represented as the auditory attribute “brightness”, has been 
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distinguished from envelope jaggedness due to a predominance of odd-numbered harmonics, which 
has been related to the hollow and nasal qualities described by Helmholtz. In addition to harmonics, 
subharmonics have been found to play a role in the perception of dizi tones. 

10.2.1 Brightness in dizi music 

The spectral distribution of harmonics of dizi tones can extend to 22 kHz, and their auditory 
attributes vary with the frequency region. The harmonics around the first formant, responsible for 
brightness, can articulate stream segregation of the dizi. The membrane raises loudness of flute tones 
by transferring acoustic energy from lower frequencies to higher frequencies, to which our auditory 
system is more sensitive. On the other hand, the harmonics around and above the second formant can 
reduce breathiness by masking the turbulence noises. 

The bright quality of dizi tones introduced by the membrane is not uniform in the entire tone 
range. Dizi tones in the fourth register lose the rich spectral content characteristic of a membrane flute. 
The inhomogeneity of brightness induces some interesting auditory associations or illusions. Lin 
(1997) mentioned the spatial effects of abrupt brightness changes in dizi music, i.e. when a melody 
ascended from bright notes to dull notes, the sound source seemed to move to a remote place 
(distancing effect) and become more difficult to localize (localization-confusion effect). 

The distancing effect can be explained in terms of spectral cues for auditory distance perception. 
Since a sound loses more high frequencies while traveling through air, unexpected absence of 
high-frequency harmonics of dizi tones might be interpreted by the auditory system as an increasing 
distance from the dizi. 

The localization-confusion effect can be explained in terms of monaural spectral cues for sound 
source localization. A lack of spectral components above 4 kHz is likely to cause a confusion of sound 
elevation that is estimated according to high-frequency monaural cues. 

Because of the involvement of other cues for auditory distance perception such as loudness, 
these two spatial effects could not actually change the psychophysical distance of the sound source. 
Yet, they may affect the aesthetic image of the dizi in music. The dizi with an inhomogeneous timbre 
is thus optimal for creating a multi-level auditory impression without changing the physical position 
of the instrument. 

10.2.2 Auditory correlates of the predominance of odd-numbered harmonics 

Dizi tones in the second and third registers are always characterized by the predominance of 
odd-numbered harmonics, which is closely related to the hollow and nasal qualities described by 
Helmholtz. I found that nasal voices produced with a water membrane in the nasal cavity have the 
spectral feature of a predominance of odd-numbered harmonics around 5 kHz and a sounding 
mechanism similar to those of the dizi tones. 

An analogy was proposed, comparing the spectral feature of large amplitude differences 
between odd- and even-numbered harmonics and the visual pattern of luminance-contrasting gratings. 
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As these gratings make a strong visual impression, so too does a predominance of odd-numbered 
harmonics evoke a distinct timbre. When this predominance occurs at high frequencies, interference 
between adjacent harmonics are largely reduced. This may explain why nasal dizi tones are described 
as ‘sweet’ by musicians. 

The predominance of upper odd-numbered harmonics can induce additional pitches, which 
enrich the texture in dizi solo music. An autocorrelation model of pitch suggested two necessary 
conditions for the existence of the additional pitches: (1) odd-numbered harmonics must predominate 
in the frequency range above the 5th harmonics, and (2) the average amplitude difference between 
odd- and even-numbered harmonics in this range must be larger than 8 dB. Since these two conditions 
are always satisfied in the dizi tones in the second and third registers but not in most tones produced 
by other musical instruments, this multi-pitch phenomenon is fairly unique to the dizi. 

10.2.3 Roughness induced by subharmonics 

Subharmonics at (2n-1)f0/2 sometimes appear in the dizi tones in the second octave. These 
subharmonics do not produce another pitch one octave below, but merely induce a rough sound 
quality. Roughness induced by subharmonics cannot be explained by past psychoacoustic models and 
appears against the theory of consonance/dissonance. 

Roughness induced by subharmonics can be explained by taking into account a grouping 
mechanism that integrates information across auditory channels. A qualitative model was proposed 
with two assumptions: (1) grouping components at nf0 demands a robust pitch sensation of f0; (2) 
unpleasant beatings caused by components in the same critical bands are largely reduced by this 
grouping. Since subharmonics in dizi tones at low frequencies are always much weaker than adjacent 
harmonics, the subharmonic pitch of f0/2 cannot be evoked. Therefore, the ungrouped subharmonics 
are perceived as impurities of dizi tones. 

Subharmonics are more important in larger dizi. A large dizi with a thin membrane has a strong 
tendency to produce upper subharmonics. Because the tone range of a large dizi is comparable to 
human singing, it is especially optimal for imitating human voices. Large dizi tones with 
subharmonics often recall melancholic voices. 

10.3 Perspectives 

10.3.1 Aerodynamics 

As the non-linearity of the membrane cannot explain the spectral content of dizi tones above 10 
kHz, another non-linear mechanism in this instrument, i.e. the aerodynamics at the mouth hole, 
should be taken into consideration. If the jet amplifies the harmonics generated by the membrane in 
the range 3–5 kHz, they may in turn drive the membrane to radiate harmonics above 10 kHz. Two 
mechanisms relevant to the jet’s sensitivity to high-frequency harmonics were proposed: the moving 



178 

 

 

separating points of the jet, and its varicose oscillations due to the pressure fluctuations at the flue exit. 
For a membrane-less flute, high-frequency harmonics are so weak that these effects could be 
neglected. For the dizi, the non-linear membrane is able to produce high harmonics, bringing the 
question of the high-frequency response of the jet into prominence. This invites further physical 
studies on membrane flutes. 

10.3.2 Biomusicology 

Dizi tones have several interesting spectral features, such as the brightness inhomogeneity, the 
predominance of odd-numbered around 4–6 kHz, and the subharmonics at high frequencies. Auditory 
effects associated with these features have shed new light on the relationship between the ecological 
role of auditory processing and music perception. 

While the new field “biomusicology” places the analysis of music origin and its application to 
the study of human origins at its very foundation (Brown et al. 2001), dizi music demonstrates 
limitations of the auditory system. For instance, abrupt brightness changes in dizi music induce spatial 
effects by exploiting the limited elasticity of the auditory system and the assumption of brightness 
constancy. Dizi music also demonstrates performance limits of the pitch-based grouping mechanism 
in auditory scene analysis. A dizi tone with subharmonics elicits the pitch which is too high to group 
the subharmonics. On the other hand, a dizi tone with the predominance of odd-numbered harmonics 
elicits too many pitches for grouping. Future research might be dedicated to discovering the neural 
representations of the spatial effects and stream segregation/grouping in auditory scene analysis. 

References 

Brown, S., Merker, B., and Wallin, N.L. (2001). An introduction to Evolutionary Musicology. In: The 
Origins of Music (edited by N.L. Wallin, B. Merker and S. Brown), MIT Press, 3-24. 

Cerda, E., and Mahadevan, L. (2003). Geometry and physics of wrinkling. Physical Review Letters 
90, 074302. 

Hagedorn, P. (1995). Mechanical oscillations. In: Mechanics of Musical Instruments (edited by A. 
Hirschberg, J. Kergomard and G. Weinreich), Springer-Verlag, 7-78. 

Heffner, R.S., and Heffner, H.E. (1992). Evolution of sound localization in mammals. In: The 
Evolutionary Biology of Hearing (edited by D.B. Webster, R.R. Fay and A.N. Popper), 
Springer-Verlag, 691-716. 

Lin, G.F. (1997). Dikuan Yioqin. （林谷芳《諦觀有情：中國音樂裡的人文世界》，台北：望

月文化） 

Thrasher, A. (2001). “Di” in The New Grove Dictionary (edited by S. Sadie), Macmillan, Vol. 7, 
277-279. 

. 



 

 

Appendix A 

Autocorrelogram for multi-pitch transcription 

The method of representing multi-pitches of quasi-periodic tones in autocorrelogram was 
developed for dizi solo music transcription. The program used is based on several autocorrelation 
models of pitch extraction (Meddis and Hewitt 1991, Cariani and Delgutte 1996, Meddis and 
O’Mard 1997). This appendix describes the principles and applications of this 
Matlab-implemented program. 

A.1 Method description 

The autocorrelogram computation for an input signal contains three stages: (1) band-pass 
filtering, (2) calculating the autocorrelation function in a moving time-window, and (3) plotting the 
value of the running autocorrelation function. 

 

 
 
Figure A.1: Band-pass filter used before autocorrelation analysis. 
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The band-pass filtering is described in Fig. A.1. Physiologically, it corresponds to the 
outer/middle ear filtering considered in Meddis and Hewitt’s (1991) model and the octave band 
weights according to the proportion of fibers in a human characteristic frequency distribution 
considered in Cariani and Delgutte’s (1996) model. Psychoacoustically, this filtering is consistent 
with the equal-loudness contours (Glasberg and Moore 1990). However, this filter used here is 
highly simplified and has a steeper attenuation at low frequency than those in previous models. 
This filter, aimed to amplify the harmonics around the first formant, demands further research for a 
justification. 

After signal filtering, autocorrelation is calculated in a finite-duration time-window, which 
shifts along the time axis. The running autocorrelation of a digital signal wav(t) at time t and lag 㱀 

is given by 
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where 㥀t is the sample period and the summation is taken for i ranging from 1 to W/㥀t with W the 
width of the time-window. Their values in the present program are 㥀t = 1s/44100 = 0.023 ms and 
W = 256㥀t = 5.8 ms. It is important to note that in autocorrelation analysis I follow Karjalainen 

and Tolonen (1999) to skip the cochlear filtering for reducing the heavy computation of filterbank 
in Meddis and Hewitt’s (1991) model. This simplification also requires further studies for a 
justification. 

In plotting the values of autocorrelation functions, plot grayness is determined by 
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The maximum of the autocorrelation function at time t, represented at the prominent pitch 

period in the autocorrelation function, is used for normalizing the autocorrelation. It is assumed 
here that peaks in the autocorrelation function are of perceptual importance only when their heights 
are larger than 0.6 times the major peak height. The y-axis of an autocorrelogram is in the cent scale 
for fitting the lines of the soprano clef (see Figs. 8.10 and 8.11). The musical pitches are extracted 
by observing the peaks of the running autocorrelation, as the following examples will demonstrate. 

A.2 Examples of autocorrelation functions 

A.2.1 Single-formant vowel 

Fig. A.2 gives the spectrum and the autocorrelation function of a single-formant vowel after 
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being passed through the filter described in Fig. A.1. The fundamental frequency 128 Hz is 
represented in the autocorrelation function as the first major peak at its period. Note that the 
autocorrelation function shows repetitive patterns beyond this period. That is why only the first 
major peak can represent the pitch. 

The formant of this vowel is represented as minor peaks dividing the major peaks. Note that 
their heights are below the threshold for pitch sensation, which is assumed to be 0.6 times the major 
peak height (dash line). So this sound has only one pitch. 

 

 
(a)                                                                        (b) 

Figure A..2: Representations of pitch of a single-formant vowel. (a) Spectrum of the voice after 
being passed through the filter described in Fig. A.1. (b) Autocorrelation function. The 
fundamental frequency 128 Hz is represented as the first major peak at its period. 

 
(a)                                                                    (b) 

Figure A.3: Representations of pitch of a vowel with a strong formant centered at 600 Hz. (a) 
Spectrum of the voice after being passed through the filter described in Fig. A.1. (b) 
Autocorrelation function. The minor peaks below the major peak represent the formant. As the first 
one of them is beyond the threshold for pitch sensation (dash line), it evokes a second pitch of 600 
Hz beside the fundamental frequency 120 Hz. 
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A.2.2 Stream segregation of a strong harmonic in a vowel 

When the formant of a vowel is strong enough, it will segregate from the prominent pitch of 
the fundamental frequency and evoke a second pitch. Fig. A.3 gives the spectrum and the 
autocorrelation function of a vowel with a strong formant. Note that the first of the minor peaks 
representing the formant is beyond the threshold for pitch sensation (dash line). So this sound has 
two pitches: the fundamental frequency 120 Hz and the frequency of the fifth harmonic 600 Hz. 
The stream segregation of a strong harmonic in a vowel finds its practical importance in overtone 
singing (Adachi and Yamada 1999). 

A.2.3 Multi-pitches due to the odd-numbered harmonics predominance 

Some dizi tones can evoke multi-pitches that are perceived as segregated streams in auditory 
scene: listeners hear “something” above the prominent pitch. Multi-pitches in dizi music can be 
explained by temporal and place models of pitch extraction. 

 

 
(a)                                                                        (b) 

Figure A.4: Representations of multi-pitches of a dizi tone with dominant odd-numbered 
harmonics. (a) Spectrum of the dizi tone and the harmonic templates of 940 Hz (marked with ‘○’) 
and 1178 Hz (marked with ‘△’). (b) Autocorrelation function of the dizi tone after being passed 
through the filter described in Fig. A.1. The periods of pitches are represented as peaks in the 
autocorrelation function. 

 
Consider a dizi tone with dominant odd-numbered harmonics [Fig. A.4(a)]. Since the spectral 

lines around the first formant are ‘double-spaced’, weak pitches approximately an octave above the 
fundamental frequency 527 Hz could be evoked. According to a pitch model in the frequency 
domain (Goldstein 1973, Terhardt 1974, Terhardt 1982), the strong 7th, 9th and 11th 
odd-numbered harmonics could induce two pitches of 940 Hz and 1178 Hz, because their 
harmonic templates fit these three odd-numbered harmonics. In the time domain, these two pitches 
are also represented in the autocorrelation function, which shows two peaks at their periods [Fig. 
A.4(b)]. 



183 

 

 

The pitch perception correlated to the odd-numbered harmonics predominance is supported 
by psychoacoustic studies using alternative-polarity clicks (Flanagan and Gutman 1964) and 
stimuli composed of equally spaced inharmonic components (Schouten et al. 1962, Patterson 1973, 
Patterson and Wightman 1976). 

A.3 Matlab implementation 
% autocorrelogram for multi-pitch transcription of dizi solo music 
%  
%   paramaters 
%   wav           input digital signal 
%   fs            sample rate of input digital signal 
%   ln            length of input digital signal 
%   duration      duration of input digital signal 
%   window        width of moving time-window in samples 
%   t_resolution  step of moving time-window in samples 
%   lag_m         time-lag for autocorrelation 
%   sm2           value of autocorrelation function 
%   y0            maximum of autocorrelation function  
%   p_st          normalized value of autocorrelation function 
%   gg            plot grayness 
 
 
clear; 
hold on; 
[wav,fs]=wavread('mp0_10.wav'); 
ln=length(wav); 
duration=ln/fs; 
 
t_resolution=512; 
window=256; 
lag_m=150; 
 
for tt=1:round(ln/t_resolution), 
    t=(tt-1)*t_resolution; 
    for lag=1:lag_m, 
        for k=t+1:t+window, 
            sm1(k)=wav(k)*wav(lag+k); 
        end 
        sm2(lag)=sum(sm1(t+1:t+window)); 
    end 
     
    [y0,i0]=max(sm2(20:150)); 
     
    if y0>0.001 
        for pp=20:150, 
            p_st=sm2(pp)/y0-.6; 
            if p_st<0 
                gg=1; 
            else                 
                gg=1-p_st*2; 
            end 
            x1=t/fs; 
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            x2=(t+t_resolution)/fs; 
            y1=log10(fs/pp)/log10(2)*1200-9930; 
            y2=log10(fs/(pp+1))/log10(2)*1200-9930; 
            patch ([x1 x2 x2 x1],[y1 y1 y2 y2],[gg gg 1]);                  
        end 
    else        
    end 
end 
 
lines=[0 4 7 11 14 17 21 24 28 31 35]*100; 
for nl=1:11, 
    plot ([0 duration],[1 1]*lines(nl),'k'); 
end 
 
 axis([0 duration 0 3500]); 
 xlabel('Time (sec)'); 
 ylabel('Cent'); 
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