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Introduction

Bagpipe makers have experimented with the bore of
their chanters over the years by trial and error, in
order to arrive to their current design. Therefore,
they are usually reluctant to give detailed information
about how their chanters are made. A quick survey
among Scottish bagpipe makers revealed that the chanter
bore profiles of Scottish bagpipes (both Great Highland
bagpipe and Border bagpipe) differ significantly between
them. However, they have the same broad configuration:
1. Reed seat, which is where the reed and staple are
inserted, 2. throat and 3. main bore (see Figure 1).
Each bagpipe maker usually makes reeds that fit only his
chanter, that is specifically matched to the instrument he
designed.

The main bore, for both Great Highland and Border
bagpipes, is conical, the taper of which varies between 1.5
and 4 degrees. An important difference between Great
Highland and Border bagpipes is that the latter has a
narrower taper than the former, since it is designed to
be played indoors. Additionally, the Border bagpipe can
be played either with bellows, or mouth blown like the
Great Highland bagpipe.

Bagpipe makers believe that there are three crucial
parameters that affect the behaviour of the chanter: 1.
the diameter and length of the throat (which is usually
cylindrical, but can also be conical), 2. the position of
where the cones meet, and 3. the individual tapers of the
cones that form the main bore. Bagpipe makers tend to
keep these details to themselves.

This study takes a simplified case, where the chanter is
assumed to have only two tapers, and the two cones meet
at the middle of the instrument. The effect of having two
tapers instead of only one single cone is studied, as well
as the effect of increasing this bottom taper, by means of
computer simulation of the reed and air column system.

The simulation solves a simple model with the Harmonic
Balance method, resulting in the spectrum of the oscil-
lating pressure inside the mouthpiece p, from which plots
of RMS and playing frequency were made. In order to
study the effect of the different bore configuration on
the radiated sound of the instrument, it is necessary to
multiply the spectrum of p times the transfer function
of the bore. Once the spectrum of the radiated sound
was obtained, the spectral centroid (which is regarded
as being a measure of “brightness” of the sound, see for
example [6], [8]) was also calculated and plotted.

In the following sections, the bore configurations of the
virtual chanters are described. The physical model used
to simulate the pressure inside the mouthpiece p is
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Figure 2: Schematic of a clarinet mouthpiece

presented, followed by the results obtained for each bore
configuration, as well as a discussion on the comparison
of the radiated sound obtained for all instruments.

Virtual Chanters

A schematic of the bore profile of the virtual instruments
that were studied here is shown in Figure 1. It has five
main parts: 1. The reed, 2. the staple, 3. the reed seat, 4.
the throat, and 5. the main bore. The reed used for the
virtual chanter was a cylinder which has approximately
the same volume as that of a Border bagpipe reed. Pipers
usually change the intonation of the chanter by inserting
or pulling out the reed into or out of the reed seat. This
is why it was chosen to leave a small portion of the reed
seat.

Physical Model

The chanter and reed system are modelled as a self-
sustained oscillator with a linear exciter (the reed) that
is coupled non linearly to a linear resonator (the air
column). This section presents the equations that were
used to model these three components.

Reed

Almeida, et al. [1] have provided evidence that the two
blades of a double reed have symmetric displacement.
This means that the motion of only one blade needs to
be modelled as a simple harmonic oscillator:

where y is the displacement of the reed, g, its damping
factor, w, its resonance frequency, p, its mass per unit
area, AP = p,, — p, pm is the pressure inside the mouth
or wind cap and p is the pressure inside the reed. The
stiffness k of the reed is

(2)

k= ppw?

This linear approximation only holds for non-beating
reeds [4], [5].
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Figure 1: Schematic showing the bore profile of the five virtual instruments studied
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Figure 3: Calculated input impedance of the chanter

The maximum negative value that y can take is —h (see
Figure 2), at which point the reed gap is closed and the
air flow into the mouthpiece is completely blocked. This
occurs when the mouth pressure p,, is equal or greater
to the closing pressure pj;:

PM = urwfh =kh

3)

Air column

The air column is usually characterised by its input
impedance Z;,, which describes the interaction between
the volume flow and the pressure inside the mouthpiece.
in the frequency domain:

P(w) = Zin(w)U(w) (4)
Zin, was calculated using the “Simulate Air Column”
feature of the program VIAS [9], by specifying the bore
profile of the chanter (see previous section). It is shown
in Figure 3.

Nonlinear coupling

The volume flow is related to the pressure across the
mouthpiece by following Bernoulli’s equation as follows

[7]:
U=wy+h)y/ 2ipsign(AP),

where w is the width of the reed channel, p is the density
of air, and AP = p,,, — p is the pressure difference across
the reed.

(5)
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Harmonic Balance Method

Equations 1 (reed), 4 (air column) and 5 (nonlinear
coupling) can be solved by the Harmonic Balance Method
[4]. To keep these equations as general as possible, these
equations are converted into dimensionless quantities by
substituting:

i=y  © f=to, ()
Pm
p= “on O

where w), is the angular frequency of the first resonance
peak of the air column. Similarly, equation 1 using
dimensionless quantities becomes:

M%JrR%vLng:ﬁf’y (10)
The parameters:
M= (ﬂ)Q (11) R=227"  (12)
Wy Wy

are the dimensionless mass and damping respectively,

and since the reed closes when p,, = py, K = 1
(dimensionless stiffness) [4].
Similarly, equation 5 becomes:

U3.9) = CL+ 9Vl = plsign(y —5)  (13)
as long as § > —1, otherwise U(p,9) = 0 [4]. The
“embouchure” parameter

2
¢ = Zowh, | — (14)
PPM

is a parameter that characterises the mouthpiece [4].

Finally, the dimensionless form of the input impedance
is obtained by:

Z;
Zo
S being the crosssectional area of the air column (cylin-

drical section) at the reed input. The dimensionless
quantities in the frequency domain are:

- pc
. Zo == 1
Zin 0="g (16)

(15)

Pw)=Zin (w)U(w)

(17)



DPth [kPa]
4

wr /27 [kHz]
4.5

gr [Hz]
300

H [mm]
0.25

Table 1: Reed parameters obtained experimentally [2]

The program harmbal [10] requires the parameters R, M
and ¢, which are specified in a parameter file. In the
version of harmbal used in this study (v2.0), the input
impedance of the air column can be specified in a file. For
a detailed discussion on the Harmonic Balance Method,
as well as how the program harmbal solves this model,
the reader is referred to [5], [4] and [3].

Physical parameters of the reed

The parameters of the reed that were used in the model
were chosen based on the results presented in [2]. It
is assumed that pps = 3pn, where pyy, is the threshold
pressure, that is, the minimum pressure required to start
the vibrations of the instrument. These parameters are
shown in Table 1.

Reed parameter calculation

The dimensionless parameters R, M and ( are calculated
with equations 11, 12 and 14, using the parameters
shown in Table 1. The speed of sound was taken to be

c= 343.57%, and the density of air p = 1.19%, which
are the values VIAS uses to do the input impedance
simulation at the default temperature (21°C). Since the
reed parameters were constant for all bore configurations,
as well as the crosssectional area at the input of the
instrument (and hence Zp), the parameter ¢ was the same
for all configurations: ¢ = 1.227. The parameters M and
R depend on both w, (constant) and wy, the latter being
dependant on each particular configuration. The actual
parameters that were passed to harmbal, are presented
in Table 2.

Parameter

Bore wp/2m M R

(Hz) (x1073) (x1073)
Single 364.15 6.5484 5.3948
+0.25° 373.14 6.8758 5.5280
+0.50° 380.63 7.1547 5.6390
+0.75° 388.13 7.4391 5.7500
+1.00° 395.62 7.7291 5.8610

Table 2: Reed parameters used for the model

Results

Once the spectrum inside the mouthpiece p was obtained,
the RMS amplitude and the pitch P in cents relative to
the frequency of the note Ff were calculated as follows:

N
RMS =, |Y A} (18)
k=1
P = 1200 - logs Jo (19)
370

where k is the harmonic number, A is the amplitude of
the k** harmonic, N is the total number of calculated
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Figure 4: RMS amplitude of p (pressure inside the

mouthpiece as solved by harmbal) vs v for all five bore
configurations

120

T
—¥— Single Taper
+0.25°
100{- . B
—k—+0.50

+0.75"

—k—+1.00 1

80

=
S
T
I

Pitch (cents)
B

201

I I I I
0.25 0.3 0.4 0.45 0.5

Figure 5: Pitch vs. v for all five bore configurations. 0 cents
corresponds to the frequency of the note F;* (370 Hz). The
horizontal dotted lines represent frequencies of the first air
column resonance.

harmonics (20), and fp is the fundamental frequency of
the sound.

Figure 4 shows a plot of RMS vs v for all five con-
figurations. The bore configurations that consisted of
two tapers had essentially the same RMS curve. The
configuration with the single taper had higher RMS
values. Figure 5 shows a plot of pitch vs v for all five
configurations. Whenever the bottom taper is increased,
the pitch also increases. The difference in pitch between
single taper and the widest bottom taper can be as much
as 50 cents.

The radiated sound spectrum was obtained from the
spectrum of p, by multiplying the latter times the transfer
function of the instrument (between the mouthpiece and
the end of the chanter), which is shown in Figure 6. From
the radiated sound spectrum, the spectral centroid SC
was calculated as follows:

N
Zk-Ak

SC:fo-k:]lvi

Ap
1

(20)

k=
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Figure 7: Spectral centroid vs. v for all five bore
configurations

Figure 7 shows a plot of SC vs 7. Starting from a single
taper, increasing the bottom taper by 0.25° will result in
a dramatic increase in spectral centroid, but increasing
the taper even further will bring the spectral centroid
back down again. If a bagpipe maker wished to modify a
single tapered chanter in order to make it sound brighter,
a slight increase would suffice, while a more dramatic
increase will actually have the opposite effect.

Nature of the bifurcation

The left limit on each branch shown in Figure 4 corre-
sponds to the minimum value of v below which Harmbal
cannot find a solution. As seen, these limit points
correspond to RMS values still large. The question is:
foreach branch, is there a portion for lower v (for which
Harmbal cannot converge) that would reach zero RMS
values through a direct Hopf bifurcation? The answer is
no, because it can be checked through a linear stability
analysis (not detailed here) that the frequency of that
solution branch (around FJ'), such as that shown in
Figure 5, emerges from the non-oscillating solution for
Yen = 0.37. Therefore, in terms of bifurcation, it suggests
that the limit left point on each branch is a turning point,
and that the branches displayed do not emerge from a
direct Hopf bifurcation. In terms of playability, it means
that it is not possible to play these frequencies for the
corresponding 7y by simply increasing v from zero, and
that the oscillation threshold when increasing v from zero
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does not match the extinction threshold when decreasing
v (hysteresis).

Conclusions

A set of five virtual chanters with different bore config-
urations were designed in order to study the effect that
the bottom taper has on the sound of the instrument. A
simple model of reed and air column system was used,
and solved by the harmonic balance method. From the
solutions of the simulation, the RMS, pitch and spectral
centroid of the sound were calculated. The modification
of the bottom taper proved to have a significant and
monotonous influence on both pitch and RMS. This
confirms what is experienced by makers: the angle of
the bottom taper is a meaningful parameter that alters
the characteristics of the sound played by a chanter.
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