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Summary

The technique of Digital Waveguide Modelling for musical instruments and room acous-

tics modelling is now quite �rmly established. In this thesis we provide an investigation

in to the practical use and extension of the technique in musical instrument models,

with an emphasis towards models of drums.

The standard waveguide technique is described and analysed mathematically for

basic models in one, two and three dimensions. Results of simulations are provided

and compared against expected theoretical output. Methods to improve the quality of

the simulations by considering the boundary termination and correcting the numerical

dispersion error are discussed.

A model for a drum is presented which utilises a technique to interface 2D and 3D

mesh structures. An analysis of the model is provided which compares the output to

phenomena found from measurements of real instruments.

Extensions to the simple waveguide are proposed which include the modelling of

sti� media in both 1D and 2D. These models include bars, sti� strings, plates and

sti� membranes and in each case model output is analysed in depth by comparing to

expected theoretical output. We also discuss approaches to include material speci�c

frequency dependent damping.

The main contributions of this thesis have been in the analysis of the waveguide

technique in 3D, the method of correcting dispersion error, the analysis and extension

of the 1D and 2D sti� models and the development and extension of the interfacing

technique used in the drum model. The original focus of the work was for drum

modelling, but the analogies and implications to other musical instruments, and indeed

in the area of room acoustics, are quite clear.
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Chapter 1

Introduction

1.1 The Modelling Process

Music has long since been established as an interdisciplinary area of research and

practice in both the arts and science. There is a well established link between music

theory and mathematics [23], and science has also been applied to the design and

analysis of musical instruments [15].

Music is almost as old as the human race itself, and consequently many musical

instruments have evolved over time to their current form. Considerations of why an

instrument should be shaped the way it is, or sound the way it does, is a knowledge

that has been passed down over many thousands of years from craftsmen to their ap-

prentices. As art 
ourished through the renaissance period beginning in 15th century

so did a return to science. Mathematical theories and descriptions of the physical world

developed extensively. The techniques found could be used to describe physical phe-

nomena and soon found their way into descriptions of musical instruments. Providing

a mathematical model of parts of the motion within a musical instrument helps us

understand the reasons why an instrument makes the sound it does, and furthermore

we may consider how changes in shape or material a�ect the quality of the sound.

Sound is simply caused by varying pressure in the air. We hear sound because it

propagates through the air in the form of waves, which our ear translates into electrical

signals which are sent to the brain. Musical instruments generate sounds by causing

vibrations which cause local changes in air pressure, sending out sound pressure waves.

There are three stages to the generation of sound in musical instruments. First, we

must excite the instrument. This is usually done by plucking or striking a string or

membrane, or perhaps by blowing. The excitation causes the physical parts of the

instrument to vibrate. The resulting changes in air pressure can be augmented and

1
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enhanced by some resonant chamber, and controlled by changing the shape or size of

the resonator or resonant chamber. Any complete physical model must represent each

of these stages. This thesis will predominantly be concerned with representations of

the vibrating parts, and coupling with resonant cavities.

To represent vibratory motion through the constituent parts of the instrument, we

derive a set of equations called Partial Di�erential Equations (PDE). These equations

may be solved in order to describe, say, the displacement, of the resonator with respect

to position and time. However, changes in the shape of the resonator means we will

often be required to re-solve the equations under a new set of boundary conditions, and

furthermore in musical instruments there will typically be many resonators coupled

together (often in di�erent dimensions, such as the skins, air cavity and shell in a

drum), and consequently �nding a single constituent set of equations will be quite

hard. Thus we consider using a numerical model for the instrument. The numerical

model approximates the physical equations over a �nite set of points arranged spatially

in a mesh. Once the numerical method has been de�ned over this mesh, changes in the

shape are quite easily implemented, without the need to re-solve the physical equation.

By constructing a physical model and its numerical equivalents we open up new

possibilities in instrument design, synthesis, and analysis. For example we may theorise

new or abstract shapes. We may build instruments using non-standard materials such

as glass or ice say, which would be diÆcult or impossible in reality. Furthermore, using

numerical mesh techniques we may envisage such expressive controls as time-varying

shapes. In an analysis sense, we may isolate particular phenomena in an instrument by

removing certain parts of the instrument in the model, something which is sometimes

hard to do and imprecise with real instruments. It is often diÆcult to measure the

behaviour of real instruments in a laboratory in order to isolate and analyse certain

phenomena to investigate their contribution to the sound. A numerical model gives us

a virtual world within which we may experiment freely and where we may bend the

rules of the physical world to �nd out more about the physical systems.

When considering musical instrument models there is also a perceptual issue [31, 39].

The desired accuracy of any numerical model and the suitability of its underlying

PDE must be set in the context of what a human being can actually hear. Humans

hear sounds only at frequencies below 20000Hz and often frequencies in an even lower

band are the most important in recognising the sound. This limit often dictates the

choice of the mathematical equations and the numerical schemes used to model a

particular instrument, when sometimes a simpler dynamical system or model can suÆce

for musical sound purposes.

There are many numerical techniques which could be used for musical instrument
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modelling, Finite Di�erence Schemes (FDS) and Finite Element Methods (FEM), being

two such cases. In this thesis we shall be investigating the Digital Waveguide modelling

technique �rst introduced to represent ideal wave propagation in 1D, and later extended

to mesh models in 2D and 3D [46, 52, 56]. We shall see in due course that the digital

waveguide represents an alternative formulation of FDS, and some consideration as to

its place within numerical modelling in terms of FDSs and FEMs will be given in the

conclusions. We begin with a summary of the thesis.

1.2 Breakdown of the Thesis

This thesis attempts to provide descriptions, performance analyses and discussions on

the use of digital waveguides in modelling musical instruments. The �eld ties together

many disciplines across the �elds of Acoustics, Signal Processing and Numerical Anal-

ysis. Consequently, care was taken when structuring the work so that many of the

complicated derivations and analyses of di�erent physical systems are included in the

Appendix. The Appendix also contains background reading in Numerical Analysis and

Digital Signal Processing.

The main structure of the thesis is designed to introduce the concept of a digital

waveguide and to use it to model some simple systems. Consequently this brings up

some problems and issues which we discuss later in the work. Chapter 1 introduces the

concept of the digital waveguide by describing it as a tool for modelling an ideal string.

This also introduces the basic procedures taken when modelling each of the systems

considered. First we derive a mathematical equation for the motion of the system.

Then we consider solutions to this equation, and follow that with a discrete numerical

method which represents this solution. In chapter 2 we introduce the concept of the

waveguide scattering junction and associated waveguide networks. We re-classify the

1D waveguide in these terms, and go on to discuss waveguides in 2D. In both these

instances we introduce the important equivalence between waveguide networks and

Finite Di�erence Schemes (FDS). We go on to show the modelling performance of

the 2D waveguide mesh, and discuss approaches to improve this performance by using

signal processing techniques.

Chapter 3 extends the theory further into 3D, discussing the performance of di�erent

mesh structures when applied to typical modelling problems in musical instrument

synthesis and room acoustics. Then in chapter 4 we bring together the work of the

�rst three chapters to build a model for a tom-tom drum. In order to complete the

model we combine the models of chapters 2 and 3 and describe an interfacing technique

used to connect the 2D meshes representing the drum skins to a 3D mesh representing
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the interior air cavity. This interfacing method was developed by the author together

with Joel Laird. By this point we have shown that the existing models can be used to

form musical instrument models. However, the model is quite simplistic, for example

we model only ideal wave propagation across the membrane, and the rest of the thesis

deals with extending the waveguide technique to include other physical phenomena

such as internal sti�ness and damping.

In chapter 5 we discuss extending the 1D waveguide technique to include models for

bars and sti� strings. This approach is extended into 2D in chapter 6 to deal with plates

and membranes. In each of these cases we describe, analyse and implement the models,

while leaving the physical derivation and analyses of the systems to Appendix A.

Finally in chapter 7 we include some introductory remarks on how to incorporate

damping. We propose a method by which this could be performed and include initial

results for the simplest cases. Chapter 8 serves to summarise and conclude the main

results of the thesis and discuss some of the vast numbers of directions that the author

feels work in this �eld could proceed.

1.3 The Wave Equation

The 1D wave equation describes the movement of transverse waves on an ideal string

and is derived in Appendix A.1.1 as

@2u

@t2
=

F

�

@2u

@x2
= c2

@2u

@x2
; (1.1)

where u(x; t) represents the transverse displacement of the string at time t and at

position x, while F is the tension under which the string is held and � its linear mass

density. To a large extent this equation, its solutions and its extensions form the

basis of most of this thesis. In this section we shall discuss solutions to this equation,

introducing some standard techniques and approaches that will be assumed throughout

the work.

1.3.1 The Travelling Wave Solution

The classical solution to this equation was formulated by D'Alembert in 1747. This

stated that the solution to the wave equation above is comprised of a superposition of

two waves travelling in opposite directions so that

u(x; t) = f(ct� x) + g(ct+ x);
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fg

f + g

Figure 1-1: Superposition of travelling waves.

where f(ct � x) represents a wave travelling to the right (in the positive x direction)

with speed c, while g(ct + x) represents a wave travelling to the left with the same

speed c. Figure 1-1 describes the superposition of two waves travelling in opposite

directions to give a single wave. For a string with a �xed end at say x = 0, we require

the displacement to be u(0; 0) = 0. In this case the general travelling wave solution

becomes

u = 0 = f(ct) + g(ct);

and hence

f(ct) = �g(ct);

from which we may conclude that a rigid termination incurs an inverting re
ection in

the travelling waves. This travelling wave interpretation of the solution to the wave

equation will be the starting point for our discussions of digital waveguides.

The travelling wave description represents a general solution to the wave equation

in terms of arbitrary functions f and g. We may also consider the existence of simple

harmonic travelling waves of the form u = Aei(wt�kx). Substitution in equation (1.1)

yields the following relationship between wavenumber k, frequency w and speed c,

k =
w

c
:

This kind of relationship can tell us much about the behaviour in a given system. In

this instance we will be able to aÆrm that waves of all frequencies will travel at the

same speed on an ideal string. The wavenumber k is also sometimes called the harmonic
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index.

1.3.2 Harmonic Solutions

To obtain a precise solution to equation (1.1) we apply the method of separation of

variables. We write the solution as u(x; t) = X(x)T (t) which gives

c2
X 00

X
=

�T

T
;

where X 0 = dX

dx
and _T = dT

dt
. Since each side of this equation depends on a single

variable only, the expression must be constant, and we set this constant to be �w2 so

that

X 00 +
w2

c2
X = 0

�T + w2T = 0:

The second of these equations has solution T (t) = A sin(wt) + B cos(wt). The �rst

equation has solution X(x) = C sin(w
c
x) +D cos(w

c
x). For a �nite string of length L,

held rigid, the boundary conditions assert that y(0; t) = y(L; t) = 0. Applying this

gives D = 0 and

sin(
w

c
L) = 0:

Thus we obtain the natural frequencies (or eigenfrequencies) of the system given by

wn =
n�c

L
;

where n 2 N. These represent discrete frequencies at which the string is capable of

undergoing simple harmonic motion. We may also represent these frequencies in Hertz

(Hz) by writing fn = wn=2�. This sequence of frequencies is referred to as a harmonic

sequence since each frequency fn is an integer multiple of the fundamental frequency

f1 = c=2L.

Now, for each n we have a vibrational pattern of the string given by

Xn(x) = Cn sin(
n�

L
x)

and the functions Xn are called the normal modes of vibration (or eigenfunctions).

Now combining the time and spatial dependencies for a given n gives solutions of the
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Figure 1-2: Mode shapes in an ideal string.

form

un(x; t) = [An sin(wnt) +Bn cos(wnt)] sin(
n�

L
x);

and a general solution formed by superposing these

u(x; t) =
1X
n=1

[An sin(wnt) +Bn cos(wnt)] sin(
n�

L
x):

The concept of natural frequencies and normal modes of vibration is one which will be

explored for many systems in this thesis, since it gives a theoretical prediction as to the

behaviour of a system with which we may compare any model. Shown in Figure 1-2

are some mode shapes of an ideal string. The points of zero displacement are called

the nodes of vibrations, while the maxima occur at antinodes. When a string is excited

by plucking, the resultant motion will be a combination of several modes of vibration.

For example, when plucking at the centre, the resultant vibration will consist of the

fundamental, followed by each of the odd-numbered harmonics, while if the string were

plucked at one �fths length, then every �fth harmonic will disappear. It is generally

considered that the richest sounds are obtained when plucking around one �fths of the

way along the string. When the string is plucked at the centre we lose too many har-

monics, while plucking too close to the end tends to excite the higher harmonics more,

giving a slightly `twangy' sound. Thus we have seen how a mathematical description

of the string has allowed us to re-aÆrm our practical knowledge.
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1.3.3 String Impedance

The concept of wave impedance is important when de�ning the digital waveguide since

it is a property which relates the velocity and force of a travelling wave. We derive

the characteristic impedance for a string by separately considering the left and right

going travelling waves. Writing the right-going wave as f(x; t) = ei(wt�kx) then the

force p(x; t) and velocity v(x; t) may be computed as

p(x; t) = �Ff 0(x; t) = Fikf(x; t)

v(x; t) = _f(x; t) = iwf(x; t);

where F is string tension and p = �Ff 0 from the derivation of the 1D wave equation.

Then the impedance Z can be computed from the ratio of force and velocity as

Z =
p(x; t)

v(x; t)
= F

k

w
=

F

c
=
p
F�:

Similarly by writing the left-going wave as g(x; t) = ei(wt+kx) we have

p(x; t) = �Fg0(x; t) = �Fikg(x; t)
v(x; t) = _g(x; t) = iwg(x; t);

giving

Z =
p(x; t)

v(x; t)
= �F k

w
= �

p
F�:

Consequently waves travelling in opposite directions have impedances of opposite sign,

and this characteristic impedance can also be calculated in terms of the density and

wave speed of the medium as R = �c.

1.4 The Digital Waveguide String

The Digital Waveguide was �rst introduced in [46] and was derived by discretising the

D'Alembert solution to the wave equation described previously. By sampling the trav-

elling waves every T seconds, corresponding to a sample rate fs = 1=T , our resultant

spatial sampling interval will be the distance travelled in one time step. That is � = cT

metres. Consequently, we may consider a discretised transverse displacement U such
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Figure 1-3: The ideal lossless waveguide.

that

Um(n) = u(nT;m�) = f(nT � m�

c
) + g(nT +

m�

c
)

= f [(n�m)T ] + g[(n+m)T ]

= U+(n�m) + U�(n+m);

where U+(n) = f(nT ) and U�(n) = g(nT ) are the discretised travelling waves. We

may think of U+(n �m) as the output from an m-sample delay line whose input is

U+(n), and similarly U�(n �m) as the input to an m-sample delay line with output

U�(n). A section of a lossless digital waveguide is shown in Figure 1-3. Note that

the digital waveguide is exact at each discrete position, and the simulation will yield

accurate solutions to the wave equation provided the initial travelling wave shapes are

band-limited to less than half the sampling frequency (the Nyquist rate). Note that we

shall be able to re-examine the 1D waveguide in the next chapter as a �nite di�erence

scheme, where we may discuss its precision using standard techniques from numerical

analysis.

Rigid terminations may be implemented by simply taking the output from the ends

of each delay line, inverting and placing at the corresponding input of the other line.

Formally, referring to Figure 1-4 we would have,

U+(n) = �U�(n)

U�(n+
N

2
) = �U+(n+

N

2
);

where N = 2L=� is the time in samples taken to complete one string loop. By de-

scribing the digital waveguide in terms of delay lines, we point towards the use of other

digital signal processing applications such as digital �lters. When representing musical
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Figure 1-4: Simpli�ed picture of the ideal waveguide including terminating re
ection.
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Figure 1-5: Harmonic Output of an Ideal String.

instruments using digital waveguides many additional phenomena can be synthesised

by using �lters. Such �lters can be used to calibrate the model, to introduce frequency

dependent e�ects observed in real instruments, to couple together other waveguide

strings or to introduce interaction between a string and an exciter [27, 54]. The output

from a 1D digital waveguide string is shown in Figure 1-5. Note the harmonic nature

of the signal. Also, the string was hit a �fth of the way along and consequently every

�fth harmonic is missing as expected.



Chapter 2

2D Waveguide Meshes

In this chapter we review many of the basic principles behind digital waveguide mod-

elling by applying the technique to modelling 2D wave propagation.We describe the

construction of waveguide meshes by arranging so-called scattering junctions in a par-

ticular geometry, and re-introduce the 1D waveguide in these terms. These ideas were

�rst introduced in [52]. At this point we describe the important connection between

digital waveguides and Finite Di�erence Schemes (FDS) for the underlying physical

equations. By doing this we are able to examine discrepancies in the modelling process

due to dispersion error which can be angularly dependent in the case of a waveguide

mesh. We apply the mesh method to a model for a circular membrane and discuss

approaches to modelling the boundary. Finally we discuss an approach to correcting

dispersion error, and apply the method again to a model for a circular membrane.

2.1 Lossless Scattering Junctions

Consider the interconnection of N waveguides, representing N strings with respective

impedances Z0; Z1; : : : ; ZN as shown in Figure 2-1. Now at the junction, all waveguides

must have the same velocity, that is

v1 = v2 = ::: = vN = vJ ; (2.1)

where v1; v2; : : : ; vN represent the discrete vertical velocities of each waveguide at the

junction and vJ , the total junction velocity. We also have the condition that all forces

must balance at the junction so that

f1 + f2 + :::+ fN = 0; (2.2)

11
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Figure 2-1: Waveguide Scattering Junction

with f1; f2; :::; fN representing the forces of each waveguide.

We resolve the force and velocity waves carried by each waveguide into left and

right going waves which are related, from section 1.3.3, by

fi = f+
i
+ f�

i
; vi = v+

i
+ v�

i
; (2.3)

f+
i
= Ziv

+
i
; f�

i
= �Ziv�i : (2.4)

These relationships follow directly from the de�nition of impedance described in chap-

ter 1.3.3. Hence from equations (2.1)-(2.4) we have

NX
i=1

f+
i
+ f�

i
= 0

)
NX
i=1

Zi(v
+
i
� v�

i
) = 0

)
NX
i=1

Ziv
+
i
=

NX
i=1

Ziv
�
i
; (2.5)

and consequently

v+1 + v�1 = v+2 + v�2 = � � � = v+
N
+ v�

N
= VJ (2.6)

) VJ

NX
i=1

Zi =

NX
i=1

Ziv
+
i
+

NX
i=1

Ziv
�
i

) VJ

NX
i=1

Zi = 2
NX
i=1

Ziv
+
i

) VJ = 2

P
N

i=1 Ziv
+
iP

N

i=1 Zi
: (2.7)
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Thus we have derived the standard junction velocity equation for a junction of N

waveguides from the N travelling wave inputs v+1 ; : : : ; v
+
N
. We may also calculate the

re
ected (or scattered) travelling wave velocity leaving the junction using equation

(2.6) giving

v�
i

= vJ � v+
i
: (2.8)

Furthermore, if all the strings have the same impedance Z, as will be the case in our

mesh structures, then equation (2.7) is reduced to

vJ =
2

N

NX
i=1

v+
i

(2.9)

Finally we note an alternative junction velocity equation comprising a sum of outgoing

velocity waves which is easily derived from the original equation.

vJ = 2

P
N

i=1 Ziv
�
iP

N

i=1 Zi
: (2.10)

We note also that there exists a dual form of this derivation for junction force. In

this case we require that the force be the same at each junction, while the velocities

sum to zero,

f1 = f2 = ::: = fN = fJ ; (2.11)

v1 + v2 + :::+ vN = 0: (2.12)

A similar derivation to above yields a similar expression for the junction force

FJ = 2

P
N

i=1 Yif
+
iP

N

i=1 Yi
; (2.13)

where Yi = 1
Zi

is the admittance of each waveguide. This concept of a waveguide

possessing two alternative wave variables will be explored in more depth in chapter 5.

2.2 Scattering Junctions in the 1D Digital Waveguide

We may now re-classify the 1D digital waveguide described in the previous chapter as

a chain of two-port scattering junctions as shown in Figure 2-2. In this instance the

velocity Uj at each junction j and at time step n may be written from equation (2.9)
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Figure 2-2: The 1-D Digital Waveguide, T represents one unit of delay.

as

Uj(n) = U+
j;0(n) + U+

j;1(n);

where U+
j;0 represents the signal entering the left hand side of junction, while U+

j;1 is

the signal entering at the right. Now by writing the incoming travelling wave signals

to junction j in terms of outgoing travelling waves at neighbouring junctions at the

previous time step, and using equation (2.8), we may write

Uj(n) = U�
j�1;1(n� 1) + U�

j+1;0(n� 1)

= Uj�1(n� 1) + Uj+1(n� 1)� U+
j�1;1(n� 1)� U+

j+1;0(n� 1)

= Uj�1(n� 1) + Uj+1(n� 1)� U�
j;0(n� 2)� U�

j;1(n� 2)

= Uj�1(n� 1) + Uj+1(n� 1)� Uj(n� 2):

Subtracting 2Uj(n� 1) from either side of this equation gives

Uj(n)� 2Uj(n� 1) + Uj(n� 2) = Uj�1(n� 1)� 2Uj(n� 1) + Uj+1(n� 1);

which we recognise as a centered �nite di�erence scheme (see Appendix B.2) for the

1D wave equation (1.1) with � = T=� = 1=c. And we note that this relationship

between the time and spatial step sizes is identical to that formed in the derivation of

the 1D waveguide in the previous chapter. This equivalence of the waveguide to a �nite

di�erence scheme will be essential in subsequent chapters where we wish to analyse the

accuracy of our waveguide models.

2.3 Simple Mesh Structures

Digital waveguide meshes are constructed by connecting unit length waveguides via

scattering junctions in a particular geometry. We introduce two such geometries as

shown in Figure 2-3. The square mesh requires 4-port junctions, which can be im-

plemented quite cheaply using only four additions and a binary shift for the division.

The triangular mesh however, requires 6-port scattering junctions and is not so cheaply
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Figure 2-3: Mesh geometries for the square and triangular digital waveguide meshes.

implemented, although we shall see later that it is the more desirable mesh structure.

Both structures can be shown to be equivalent to a FDS for the 2D wave equation

de�ned in Appendix A.1.2 as

@2u

@t2
(t; x; y) = c2

�
@2u

@x2
(t; x; y) +

@2u

@y2
(t; x; y)

�
; (2.14)

where u(t; x; y) represents vertical displacement, c =
p
F=�, F is tension per unit length

of the membrane and � its super�cial density. By drawing this equivalence we are able to

apply stability and performance tests from numerical analysis to the waveguide meshes.

In fact, it is possible to derive digital waveguide meshes and networks which represent

a large class of PDEs possibly providing good physical descriptions of complicated

systems, but this is outwith the scope of this thesis and the curious reader is pointed

towards [8]. Certainly with the simple waveguide mesh, however, we have a physically

intuitive form of the wave equation, which is perhaps much more readily understandable

to the lay-man than the underlying FDS.

To prove the equivalence of the two methods we begin by taking the Z-transform

(Appendix C.1) of the two forms of the junction velocity equation (2.9) and (2.10),

giving

VJ(z) =
2

N

NX
i=1

V +
i
(z) (2.15)

VJ(z) =
2

N

NX
i=1

V �
i
(z); (2.16)

where VJ(z) represents the Z-transform of the discretised transverse junction velocity

vJ(n). The notation used in the following derivation has been chosen in order to

develop a general equivalent di�erence scheme which can then be applied to meshes of
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either a square or triangular geometry. We use the Z-transform to keep the waveguide

mesh within the signal processing framework, since we investigate a �ltered mesh later.

However, it should be clear that the following calculations are almost identical in the

temporal domain. Furthermore, the notation used here will in fact be replaced by

standard �nite di�erence scheme notation in subsequent chapters.

Now, by letting VJ;i(z) be the velocity signal of the i
th junction adjacent to junction

J we may rewrite equation (2.16) in a form involving wave signals incoming to each

adjacent junction from junction J at the next time step,

VJ(z) =
2

N

NX
i=1

zV +
J;i
(z); (2.17)

where V +
J;i
(z) represents the incoming wave signal to the ith adjacent junction coming

from junction J , and the extra z represents the forward time step. Similarly we may

rewrite equation (2.15) again involving the signals at the adjacent junctions, but this

time at the previous time step, and where v�
J;i
(z) represents the outgoing wave signal

from the ith adjacent junction in the direction of junction J ,

VJ(z) =
2

N

NX
i=1

z�1V �
J;i
(z)

=
2

N

NX
i=1

z�1
h
VJ;i(z)� V +

J;i
(z)
i
; (2.18)

where the coeÆcient z�1 represents a reverse time step, as described in Appendix C.1,

and VJ;i(z) is the velocity of the ith adjacent junction. Now multiplying (2.17) by z�2

and adding to equation (2.18) yields

(1 + z�2)VJ (z) =
2

N

NX
i=1

z�1VJ;i(z);

and then multiplying through by z, followed by the inverse Z-transform gives us the

result

vJ(n+ 1) + vJ(n� 1) =
2

N

NX
i=1

vJ;i(n):

Now, subtracting 2vJ (n) from both sides we obtain the following di�erence equation



CHAPTER 2. 2D WAVEGUIDE MESHES 17

x

y
l

m

1

2

p
3

2

�

p
3

2

Figure 2-4: Coordinate axes for the triangular mesh.

consisting of a second order time di�erence on the left hand side,

vJ(n+ 1)� 2vJ (n) + vJ(n� 1) =
2

N

NX
i=1

[vJ;i(n)� vJ(n)] : (2.19)

This di�erence equation will take di�erent forms depending on the mesh geometry

chosen. For a square mesh, where N = 4 and junction J has coordinates l;m equation

(2.19) becomes

vl;m(n+ 1)� 2vl;m(n) + vl;m(n� 1) =
1

2
[vl+1;m(n)� 2vl;m(n) + vl�1;m(n)]

+
1

2
[vl;m+1(n)� 2vl;m(n) + vl;m�1(n)] ;

which is clearly a centered �nite di�erence scheme approximation to the the 2D wave

equation (2.14), as given in Appendix B.2, with simulation parameters related by �c =
Tc

�
= 1p

2
. The stability and losslessness of the waveguide mesh was inferred by the

passive nature of the waveguide junctions, but it may now be compared to stability of

the FDS, which will be discussed in the subsequent section.

To evaluate the equivalence of the triangular waveguide mesh with a FDS, we must

reset the 2D wave equation in the new coordinate system as shown in Figure 2-4. The

new coordinate system has two new axes in the directions l and m. Partial derivatives

in these new directions are calculated from

@w

@l
=

1

2

@w

@x
+

p
3

2

@w

@y

@w

@m
=

1

2

@w

@x
�
p
3

2

@w

@y
:

By summing and subtracting these terms we can derive expressions for the partial
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derivatives in the x and y directions in terms of partial derivatives

@w

@x
=

@w

@l
+

@w

@m
@w

@y
=

1p
3

�
@w

@l
+

@w

@m

�
:

By applying each of these partial derivatives twice we obtain

@2w

@x2
=

@2w

@l2
+ 2

@2w

@l@m
+

@2w

@m2

@2w

@y2
=

1

3

�
@2w

@l2
� 2

@2w

@l@m
+

@2w

@m2

�
:

Hence the 2D wave equation may be reformulated for these new triangular coordinates

as

@2w

@t2
= c2

2

3

�
@2w

@l2
+

@2w

@m2
+
@2w

@x2

�
: (2.20)

Returning to the di�erence equation (2.19), using a triangular mesh results in the

following FDS

vl;m(n+ 1)� 2vl;m(n) + vl;m(n� 1) =
1

3

�
v
l+ 1

2
;m+

p
3
2

(n)� 2vl;m(n) + v
l� 1

2
;m�

p
3
2

(n)

�

+
1

3

�
v
l� 1

2
;m+

p
3

2

(n)� 2vl;m(n) + v
l+ 1

2
;m�

p
3

2

(n)

�

+
1

3

�
vl+1;m(n)� 2vl;m(n) + vl�1;m(n)

�
:

Again this is clearly a stable �nite di�erence scheme approximation to the 2D wave

equation (2.20) in the new coordinate system with again �c = Tc

� = 1p
2
.

2.4 Calculating and Comparing Dispersion Error

By drawing an equivalence between the waveguide mesh and FDS we are able to con-

sider methods from numerical analysis in order to help determine the accuracy of the

two mesh structures. Von Neumann analysis is an easy way to determine stability and

wave propagation characteristics by evaluating the spectral ampli�cation factor. We

leave the complete theory of this form of analysis to Appendix B.3 and include only a

brief summary here. The spectral ampli�cation factor tells us how a scheme behaves

in the frequency domain for each time step in the simulation. The ampli�cation factor

is a complex function and tells us the magnitude and phase response of the scheme for
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each time advance. This method is equally applicable in one, two or three dimensions.

We shall see its use in one dimension later on, but now we consider applying this type

of analysis to the square and triangular waveguide meshes.

Following the notation of the previous sections, we take the Fourier transform of

equation (2.19) to obtain the following quadratic equation for the spectral ampli�cation

factor G(w), where w is the two dimensional angular frequency vector w = (wx; wy)
t,

1 + bG+G2 = 0;

where

b = � 2

N

NX
i=1

eiP
t
j;i(w): (2.21)

In the above expression for b, the function P describes the linear phase shift experienced

by the Fourier transform of the velocity when moved to each of the neighbouring

grid positions in the FDS. For example, the point (l + 1;m) induces the phase term

P t

l+1;m(w) = wx while the point (l;m � 1) gives P t

l;m�1(w) = �wy. Hence for the

square mesh, the quantity b becomes

b = �1

2

�
eiwx + e�iwx + eiwy + e�iwx

�
= � cos(wx)� cos(wy); (2.22)

while for the triangular mesh

b = �
1

3

�
ei

1
2
(wx+

p
3wy) + e�i

1
2
(wx+

p
3wy) + ei

1
2
(wx�

p
3wy) + e�i

1
2
(wx�

p
3wy) + eiwx + e�iwx

�

= �
2

3

�
cos(wx) + cos

1

2
(wx +

p
3wy) + cos

1

2
(wx �

p
3wy)

�
: (2.23)

Noting that in both cases above b2 � 4 < 0 for all values of w, then the quadratic in G

has complex roots given by

G(w) =
�b
2
� i

p
4� b2

2
:

We observe immediately that the spectral ampli�cation factor has unit magnitude, a

characteristic of the losslessness and passivity of the scattering junctions from which
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Figure 2-5: Dispersion error plot for the Square and Triangular meshes.

the meshes are formed. By calculating the phase of the spectral ampli�cation factor

�(w) = tan�1

 p
4� b2

�b

!
;

we may calculate the angular frequency dependent speed of wave propagation of a two

dimensional plane wave over the mesh, in spatial samples per time step as

K(w) =
�(w)

jwj :

We may now compare and discuss the dispersion characteristics of both the square and

triangular meshes. Ideally all waves on an membrane travel at the same speed regardless

of their angular frequency, that speed being c =
q

F

�
. The left-hand contour plot of

Figure 2-5 shows the dispersion of the square mesh. Here and throughout the thesis

we consider dispersion for frequency w = 2�f
fs

, where fs is the sample rate and f is the

frequency in Hz. We may conclude that waves will travel perfectly along the diagonal,

but that in the axial direction there is a dispersion error. That is, waves travel slower

with increasing frequency. This angular dependence on the propagation is undesirable.

By using a triangular mesh we may eliminate the direction dependence of the dispersion

error as shown by the right-hand contour plot in Figure 2-5. Furthermore Figure 2-

6 shows cross-sections of the dispersion error plots showing maximum and minimum

dispersions, and clearly there is great disparity in the dispersion error of the square

mesh. We shall see that the shape of the dispersion error corresponds with a contraction

of the resonant modes in a simulation of an ideal membrane later, with the mis-tuning

of the resonances increasing with increasing frequency. In fact, we shall see in a later

section that direction independent dispersion error is a desirable property of a mesh,
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Figure 2-6: Max and Min Dispersion Error in Square and Triangular Meshes.

as it makes it easier to develop methods with which to correct the error. Furthermore

it has been observed in [19] using signal theory that the triangular mesh o�ers a larger

bandwidth than the square mesh.

Another mesh which o�ers near direction independence of the dispersion error is

the interpolated scheme initially formulated in [42]. We include its derivation and some

comments in Appendix B.4.1.

2.5 Building Membrane Models

We consider building a model of a circular membrane using a triangular digital waveg-

uide mesh. The model shows a level of accuracy where errors are consistent with the

dispersion error. We note that the triangular mesh does not model the circular bound-

ary and consider the inclusion of so-called rimguides, �rst introduced by [25], as a

method which more accurately models the circular boundary. Membrane models have

also been considered in [16] where a simple `staircase' boundary was implemented and

we show that the method of rimguides improves this more simple approximation.

2.5.1 Using Rimguides to Model the Circular Boundary

To determine the size of our triangular digital waveguide mesh we will need to satisfy

the following rule; that the time taken for a wave to traverse the diameter of the true

membrane must match the time taken over the mesh. This will yield an ideal mesh

diameter size, within which we will attempt to �t our mesh. In order to model the

re
ection best at the boundary of the membrane, we will assume that the membrane

edge is �xed (as is the case with a drum skin). Then from the outermost mesh points

(those closest to the boundary) we shall attach radial waveguides which will carry the
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Figure 2-7: Modelling a circular membrane with a triangular waveguide mesh and

rimguides.

signal to the boundary and back, together with a sign inversion to model the inverting

re
ection incurred at the �xed boundary. These self-loops have been termed rimguides.

Of course due to the irregular nature of the boundary of the triangular mesh, these

rimguides will not in general be an integer number of samples long, so we will consider

implementing them using fractional delay �lters. Using an allpass �lter (Appendix C.2)

to model the fractional delay imposes an ideal delay between 1:5 and 2:5 units. Thus

we construct the mesh within an ideal mesh diameter db which is 1:5 units of delay

below the true diameter. Recall that the rimguide produces half its delay out to the

boundary and half its delay back to the mesh. An illustration of a triangular mesh

with rimguides attached is shown in Figure 2-7.

Now the allpass �lter models the required delay well for low frequencies, and for

low frequencies we will assume that all waves travel across the mesh at the nominal

wave speed, which is the DC wave speed K(0) = 1p
2
. Thus the time taken to traverse

the mesh will be

t =
1

fs

�
db

K(0)
+ 1:5

�
;

where db is the (as yet uncalculated) mesh diameter in spatial samples, and fs is the

sample rate. Note how we have included the minimum delay a�orded by the rimguides.

Now given a membrane of radius r metres, and a wave speed c from equation (2.14),

the time in seconds to traverse the membrane is calculated as t = 2r
c
. Setting the two
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times to be equal gives

2r

c
=

1

fs

�
db

K(0)
+ 1:5

�

) db = K(0)

�
2rfs
c

� 1:5

�
:

Alternatively, if the size of a spatial sample within the mesh is � =
p
2c
fs

= 1
K(0)

c

fs
and

the distance in waveguides travelled across the mesh in 1:5 time steps is 1:5K(0), then

this boundary diameter can be expressed directly as

db =
2r

�
� 1:5K(0)

= K(0)

�
2rfs
c

� 1:5

�
:

The mesh is then constructed to �t within this boundary. Now nodes closest to

the boundary will have a diameter dm � db. The total delay which the rimguide must

implement will be

�m =
2rfs
c

� dm

K(0)
;

and we note that this delay will necessarily be greater than 1:5.

An allpass �lter will produce a delay for low frequencies which is very close to

D = 1 + 1�a
1+a , thus we will require to have

�
1 +

1� a

1 + a

�
= �m

) 1

1 + a
=

�m

2

) a =
2� �m

�m
:

By ensuring that the delay be in the range �m 2 [1:5; 2:5] the �lter coeÆcient will be

bounded so that a 2 [�2
5
; 1
3
]. Note also that it may be possible that the required delay

be greater than �m = 2:5 units of delay, and that in this case we implement a pure

integer delay plus a fractional part within the correct bounds. That is we consider the

delay as �m = N + d, where N is an integer, and d 2 [1:5; 2:5].

Finally we note that a given boundary node, to which the rimguide will be attached

will be less than a six port junction. To avoid an impedance discontinuity, and hence

maintain junction passivity, the rimguide takes the impedance of the missing waveg-
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Figure 2-8: Frequency Plot For Membrane Without Fractional Length Rimguides.

Mode True Frequency Without Rimguide With Rimguide

f0;1 160:8 163 161
f0;2 369:1 373 369
f0;3 578:7 584 578
f0;4 788:5 796 786
f0;5 998:4 1006 995

Table 2.1: Comparing measured and real mode frequencies for meshes with and without

rimguides.

uides. So for anM port junction, whereM < 6, the rimguide will have 6�M times the

impedance of the other waveguides. We show later in the 3D case that this approach

is justi�ed when we consider the equivalent FDS at the boundary.

2.5.2 Membrane Simulations

We consider using a triangular waveguide mesh to model an ideal membrane of ra-

dius r = 20cm, with density � = 0:262kg=m2 and held at a uniform tension of

F = 1850N=m. By setting the sample rate to fs = 22050Hz we have a mesh boundary

diameter db = 73:5124 waveguides, and we consider striking the membrane at its centre

with an impulse so as to excite only the central modes of vibration. These values are

quite reasonable simulation values [15, 30]. Shown in Figure 2-8 is the frequency

spectrum for the mesh simulation with unit length rimguides. This gives a so-called

`staircase' boundary approximation implementing inverting re
ections. Each measured

resonant mode is represented by `+', while expected modal positions are marked by

`o'. We observe reasonable accuracy and an error which increases with frequency. Note
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Figure 2-9: Frequency Plot For Membrane With Fractional Length Rimguides.
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Figure 2-10: Errors in the positions of the resonant modes for membrane with and

without rimguides.

however, that over the �rst few modes the model produces frequencies which are slightly

higher than the theoretical modes, but that further up the scale frequencies are system-

atically lower than the desired resonances. A plot of the error over the �rst 15 modes

is shown in the left hand plot of Figure 2-10. We now consider an implementation of

the mesh together with fractional length rimguides whose frequency spectrum is shown

in Figure 2-9. Table 2.1 shows that with the rimguides the model has the correct

fundamental frequency, and that the �rst 5 modal frequencies are more accurate. In

the right hand plot of Figure 2-10 we see that the error incurred in the mesh with

rimguides is entirely consistent with an error caused by dispersion, while without the

rimguides, extra inaccuracies are introduced due to the irregular boundary. In fact,

with the fractional length rimguides in place, the only error is due to dispersion. We

conclude that with a process to reduce the dispersion error, then together with the use

of fractional length rimguides we would be able to model ideal wave propagation in
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a membrane quite accurately using a triangular waveguide mesh. We now discuss a

method by which we may reduce dispersion error in the triangular waveguide mesh.

2.6 Correcting Dispersion Error Using a Filtered Mesh

In this section we review an approach to correct the dispersion error. The method

is an on-line process, where allpass �lters are used in cascade with the units of delay

between the nodes on the mesh [17]. These allpasses can be used to warp the frequencies

during the course of propagation through the mesh, essentially speeding up the higher

frequencies. This is due to the nature of the phase response of the allpass �lter (see

Appendix C.2.1). Thus we consider straightening the dispersion error observed in

Figure 2-6.

2.6.1 Calculating Dispersion in the Filtered Mesh

Let us begin with a mathematical analysis of the new warped mesh. Warping is achieved

by replacing each unit of delay in the waveguide mesh with a �lter comprising a single

unit of delay together with a �rst order allpass �lter, so that the transfer function is

H(z) =
z�1(a+ z�1)

1 + az�1
;

where a is the allpass �lter coeÆcient. It should be pointed out at this stage that

this �lter will implement a DC delay D = 1 + 1�a
1+a . Thus it is clear that the sampling

resolution for the �ltered mesh will be required to be much higher than with the

standard mesh. We recast the junction velocity equations (2.17) and (2.18) to give the

following expressions

Vj(z) =
2

N

NX
i=1

1

H(z)
V +
j;i
(z)

Vj(z) =
2

N

NX
i=1

H(z)
h
Vj;i(z)� V +

j;i
(z)
i
:

Consequently we have

�
1

H(z)
+H(z)

�
Vj(z) =

2

N

NX
i=1

Vj;i(z):
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Now by computing 1
H(z)

+ H(z) and by writing b = � 2
N

P
N

i=1 e
iP t
j;i(w) as before, we

may derive the following quartic expression for the spectral ampli�cation factor,

1 + a(2 + b)G+ [a2(2 + b) + b]G2 + a(2 + b)G3 +G4 = 0; (2.24)

where we have the same expression for b as with the un�ltered triangular mesh (2.23).

Now we solve this quartic expression to give the spectral ampli�cation factor as

G(w) =
�A
2
� i

p
4�A2

2
;

where

A =
a(2 + b)�

p
a2(b2 � 4)� 4(b� 2)

2
:

We note the existence of two other solutions to the quartic expression (2.24) which

contribute parasitic modes [47] which have no bearing on the output of the simulation.

Once again to calculate the frequency and angularly dependent wave speed of the mesh

we must consider the normalised phase of the spectral ampli�cation factor. Shown in

Figure 2-11 is a contour plot of the dispersion observed for an allpass �ltered mesh with

allpass coeÆcient set to a = �0:45. It clearly shows a broad 
at area around the origin

corresponding to a near 
at dispersion. Looking in more detail, we may consider cross-

sections of the dispersion plot also shown in Figure 2-11 and we compare to the cross

sectional plot for the un�ltered mesh in Figure 2-6. From this we may deduce that over

a wide range of frequencies about DC, waves on the �ltered mesh travel at practically

the same speed. This would appear promising in our quest to model an ideal membrane

by reducing the dispersion error inherent in the original mesh formulation, but it should

be noted that there are some trade-o�s. Firstly, we note that the DC wave speed in the

�ltered mesh is considerably lower than that of the original mesh since there is a larger

delay between nodes. For the �ltered mesh we have K(0) � 0:195, while in the original

mesh we had K(0) = 1p
2
� 0:707107. Consequently due to the slower average wave

speed, we would require a much larger sampling resolution (around 3 and a half times as

large) for simulations using the �ltered mesh. Secondly, by observing the greyscale plot

in Figure 2-11 a little more closely, we observe a slightly hexagonal nature, meaning

that the dispersion is now not quite so angularly independent. Figure 2-11 shows the

extremes of the dispersion error in the �ltered case, showing quite clearly a larger

angular dependence in the �ltered mesh.
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Figure 2-11: (a) Angularly dependent dispersion error in the �ltered mesh with a =
�0:45. (b) Max and Min Dispersion Error in Filtered Mesh with a = �0:45.

Mesh Additions Multiplications Memory Locations

Standard 12 1 7
Filtered 24 7 13

Table 2.2: Comparing computing requirements between the standard and allpass �ltered

waveguide meshes.

2.6.2 Simulation

We now test the viability of the �ltered mesh by comparing its performance with the

standard mesh at high sample rates. Again we model a circular membrane struck at its

centre with the same model parameters as before. We also include rimguides in each

model. By ensuring the models are almost completely circular we are able to conclude

that any errors in the models' frequency spectra have occurred solely due to dispersion

error. We are then able to make a comparison of the two methods, standard and �ltered

mesh, in both suitability and performance. Shown in Table 2.2 is a description of the

amount of processing and memory required for each method. It describes the number

of additions, multiplications and memory locations required for each junction for each

time step of a simulation. Shown in Figure 2-12 is a plot of the frequency output

for a membrane model struck at its centre using the standard mesh at a sampling rate

of fs = 66150Hz. Again the resonant peaks are marked `+', with expected modes

marked `o'. It shows reasonable accuracy over the �rst twenty resonant modes as

shown in Figure 2-14 with the error being entirely consistent with the dispersion. This

is quite a heavy simulation to run, since the high sample rate results in a mesh of

44665 nodes. Compare this with the output of the allpass �ltered mesh, ran at the

same sample rate, as shown in Figure 2-13. This displays a high level of accuracy over

the �rst twenty harmonics, with again the errors in each resonant mode (Figure 2-14)
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Figure 2-12: Frequency Spectrum of Standard Mesh for fs = 66150Hz.

Mesh Fs Nodes Additions Multiplications Memory Locations

Standard 66150 44665 3:546 � 1010 2:995 � 109 312655
Filtered 66150 3403 5:403 � 109 1:576 � 109 44239
Filtered 88200 6007 1:272 � 1010 3:709 � 109 78091

Table 2.3: Performance Comparison Between Standard and Filtered Meshes.

being predicted by the shape of the dispersion curve of Figure 2-11. Furthermore due

to the slower average wave speed the mesh need only consist of some 3403 nodes. Note

however the large error in the 20th mode. This is due to the double peaks which start

to appear higher up the frequency spectrum. These double peaks are most probably a

consequence of the angular dependence of the dispersion error in the case of the allpass

�ltered mesh as shown in Figure 2-11 which compromises the circular boundary. Double

peaks can occur in the standard mesh, but to a lesser extent. It is important to note

however the di�erence in the computational requirements of each method. Shown in

Table 2.3 are the computational and memory requirements of each method. The table

describes the number of additions and multiplications each method must perform to

create one second of sound, and the number of memory locations required at each time

step. Clearly the �ltered mesh is much less of a burden, since it uses many fewer nodes.

Thus we may consider increasing the sample rate still further and obtaining accurate

results over a wide bandwidth using the �ltered mesh. For example, by increasing the

sample rate to fs = 88200 we obtain a highly accurate model up to around 6000Hz, as

shown in Figure 2-15, with comparable computational resources as were used by the

standard mesh at the lower sample rate, where accuracy was only maintained up to

around 2500Hz.
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Figure 2-13: Frequency Spectrum of Filtered Mesh for fs = 66150Hz.
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Figure 2-14: (a)-Errors for Standard Mesh with fs = 66150Hz. (b)-Errors for Filtered

Mesh with fs = 66150Hz.

2.7 Conclusion and Discussion

In this chapter we have shown that a circular membrane may be accurately modelled

using a triangular waveguide mesh. Furthermore the use of fractional length rimguides

at the boundary improves the quality of the circular boundary implementation, and

consequently the only errors in the simulation are due to dispersion. On line correction

of dispersion error using embedded allpass �lters can be used to improve the band-

width of the simulation. However we believe it introduces some angular dependence to

the dispersion which may compromise its immediately perceived improvements. The

structure of having allpasses placed between nodes however could have a dual purpose

in order to model tension modulation in membranes and we discuss this a little further

in chapter 8. The �ltered mesh provides a high level of accuracy over its useful band-

width, out of which the signal seems to degrade rapidly. Using the standard mesh,
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Figure 2-15: Frequency Spectrum of Filtered Mesh for fs = 88200Hz.

we obtain a much more gentle increase in the error with increasing frequency, without

the sudden change experienced with the �ltered mesh. Thus if computational require-

ments are not an issue, then perhaps the standard mesh used at a high sample rate will

suÆce for reasonable membrane simulations. Otherwise, if a high level of accuracy is

required over a particular bandwidth, then the allpass �ltered mesh is suitable. In the

former case, and the case where only 2D modelling is required, it may be better to fre-

quency warp the output of a standard mesh to correct the dispersion error. Frequency

warping has been used to improve the simulation results obtained by the waveguide

mesh [43, 44, 45]. However, as it is a post-process, it could not be used whenever the

mesh was required to interact, or be interfaced with another mesh. Thus we disregard

it in the context of this thesis.



Chapter 3

3D Waveguide Meshes

In this chapter we simply extend the waveguide mesh method of the previous chapter

into 3D. Di�erent 3D mesh structures have previously been considered such as the

3D rectilinear mesh [41] and the tetrahedral mesh [55, 56]. Also a dodecahedral mesh

has been presented in [18] and [27]. By way of analogy to the previous chapter we

concentrate on the rectilinear and dodecahedral structures in this chapter. After dis-

cussing their construction and dispersion errors, we discuss the application to problems

involving the modelling of rectangular and cylindrical 3D enclosures.

3.1 The Rectilinear 3D Mesh

The rectilinear waveguide mesh is a straightforward extension of the square mesh de-

scribed previously. It is made up from 6-port scattering junctions arranged at integer

valued spatial positions in each of the three axial directions. Analogously with the 2D

case this mesh structure can quite easily be shown to be equivalent to a stable FDS for

the 3D wave equation (A.1). It is useful to follow through the process as it also helps to

understand the practical operation of the method. By writing the pressure at junction

(i; j; k) by Pi;j;k(n) we write the junction pressure in terms of travelling pressure waves

into each port using the standard scattering junction equation (2.9), and proceed as

32
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follows.

Pi;j;k(n+ 1) =
1

3

5X
l=0

P+
i;j;k;l
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=
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3

h
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i;j+1;k;3(n) + P�
i�1;j;k;0(n) + P�
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i
=

1

3

h
Pi+1;j;k(n) + Pi;j+1;k(n) + Pi�1;j;k(n) + Pi;j�1;k(n) + Pi;j;k+1(n) + Pi;j;k�1(n)

i
� 1
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h
P+
i+1;j;k;2(n) + P+

i;j+1;k;3(n) + P+
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h
Pi+1;j;k(n) + Pi;j+1;k(n) + Pi�1;j;k(n) + Pi;j�1;k(n) + Pi;j;k+1(n) + Pi;j;k�1(n)

i

� 1

3

5X
l=0

P+
i;j;k;l

(n� 1)

=
1
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h
Pi+1;j;k(n) + Pi;j+1;k(n) + Pi�1;j;k(n) + Pi;j�1;k(n) + Pi;j;k+1(n) + Pi;j;k�1(n)

i
� Pi;j;k(n� 1):

Now, simplifying this expression and subtracting 2Pi;j;k(n) from each side, we reduce

to

Pi;j;k(n+ 1)� 2Pi;j;k(n) + Pi;j;k(n� 1) =

1

3
[Pi+1;j;k(n)� 2Pi;j;k(n) + Pi�1;j;k(n)]

+
1

3
[Pi;j+1;k(n)� 2Pi;j;k(n) + Pi;j�1;k(n)]

+
1

3
[Pi;j;k+1(n)� 2Pi;j;k(n) + Pi;j;k�1(n)] (3.1)

and this is quite clearly a centered FDS for the 3D wave equation by comparing to

equation (B.1) in Appendix B.2. We may hence deduce the relationship between the

spatial step � and time step T as Tc=� = 1=
p
3. Thus, the size of a spatial step in

the mesh may be calculated from the sample rate fs as

� =

p
3c

fs
:

The dispersion factor can be calculated in the usual manner by computing the spectral

ampli�cation factor G(w), which is now a function of the 3D frequency vector w =
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(wx; wy; wz)
T . We again have

G(w) =
�b�

p
b2 � 4

2
; (3.2)

where for the rectilinear mesh

b = �2

3
(cos(wx) + cos(wy) + cos(wz)) :

We note that again b2 < 4 so that the ampli�cation factor is complex, with unit

magnitude, and hence the scheme is stable and lossless. The dispersion is calculated

as usual from the phase of the ampli�cation factor as

K(w) =
1

jwj tan
�1

 p
4� b2

�b

!
;

where we note that for a 3D waveguide mesh the DC wave speed is K(0) = 1p
3
. Shown

in Figure 3-1 are dispersion plots from various viewpoints in the (wx; wy; wz) plane. The

�rst two plots are identical since the mesh is a 2D square mesh when viewed along any

of the axial directions. Notice how in each plane of view we incur a direction dependent

error, and that this dependence is not the same when we change the plane of view. This

inconsistency in the dispersion characteristics of the mesh makes it quite undesirable.

Another mesh which o�ers similarly irregular dispersion characteristics, but with a

multiply free implementation is the tetrahedral mesh described in [55] and [56]. We

will disregard it here as we concern ourselves with accuracy over speed of calculation.

3.2 The 3D Dodecahedral Mesh

We have already encountered in section 2.5 a preference for mesh structures which

display a uniform angular dependence in the dispersion error. For the 2D case we

saw how such a characteristic could be obtained using a triangular mesh geometry or

perhaps the interpolated structure described in Appendix B.4.2. For the 3D case we

consider a mesh based upon the densest arrangement of nodes within 3D space which

allows orientation-less mesh connections, as has been presented in both [18] and [27].

This mesh is constructed of 12-port scattering junctions whose neighbours are placed

according to the coordinates described in Table 3.1. Shown in Figure 3-2 is a plan view

of a scattering junction in the mesh, thus we may note that the mesh is triangular in

each horizontal plane.

The mesh is named the Dodecahedral mesh, since the element of volume which each
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Table 3.1: Coordinates of neighbouring mesh points for node at (0; 0; 0)
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Figure 3-3: A Rhombic Dodecahedron
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node represents is a 12 sided shape called a Rhombic Dodecahedron [35] (Figure 3-3).

The mesh operations may be summarised as follows
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(n� 1):

where P�
i;j;k;l

(n) represents the incoming or outgoing velocity in direction l from the

junction at mesh coordinates (i; j; k) and at time step n, and where 0 � l � 11.

By considering and manipulating the junction pressure equations it is easily shown

that this mesh is equivalent to the following FDS,

Pi;j;k(n+ 1)� 2Pi;j;k(n) + Pi;j;k(n� 1) =
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Clearly this is a centered FDS for the 3D wave equation when the spatial di�erence is

formed using the allowed propagation direction for axes as described by equation (B.2)
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of Appendix B.2. We may also calculate the dispersion factor by using
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:

in equation 3.2. We plot the dispersion characteristics in Figure 3-4 and compare to

the 3D square mesh dispersions of Figure 3-1. The new mesh certainly o�ers much

better performance since the error is nearly independent of direction, and there is

little variation between the di�erent planar viewpoints. A mesh with an even better

performance in the dispersion battle is the tri-linearly interpolated mesh discussed in

Appendix B.4.2. Although highly computationally expensive, it o�ers near direction

independent dispersion error through every plane of view, as shown in Figure B-5.

3.3 Using 3D meshes to model Acoustic Spaces

We now consider using a 3D waveguide mesh to model the propagation of sound pres-

sure waves in air. The rectilinear and interpolated meshes have been used to model

square shaped rooms in [40] and [41], and the interior of a kettle drum (semi-ellipsoidal)

has been modelled in [27] using the dodecahedral mesh. In this section we will demon-

strate the practical use of 3D meshes by modelling cubic, rectangular and cylindrical

enclosures of air. The biggest problem to be encountered when designing a simulation

is the boundary and there are two points of consideration. The �rst of these is to de�ne

the type of boundary, and to that end we shall assume a rigid boundary, and describe

how to implement such a condition below. Secondly we must consider the shape of the

boundary and geometry of the mesh. Using a square mesh for a square boundary is

quite straightforward, however, if the mesh were not of such a regular geometry, or the

boundary were of a di�erent shape, say curved, then diÆculties clearly arise.

3.3.1 Boundary Conditions

In order to present a general model which could easily be adapted to model di�erently

shaped domains, we approach the boundary problem by including rimguides much

as we did in section 2.5 for membrane simulations. When using either the square

or interpolated meshes to model square enclosures it would be possible to adjust the

sample rate so as to have an exact number of nodes in each direction. However, any

output signal would then have to be resampled and considering that most domains will
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not have exactly square boundaries, we investigate the use of other mesh structures and

the use of rimguides. First we formulate the boundary problem in the �nite di�erence

domain, and describe its analogy in the waveguide domain.

Now, the boundary conditions for pressure waves are not quite as they were for

transverse waves on a membrane or string. For a perfectly rigid boundary at say,

x = l, we must have @p

@x
= 0 [15, 33]. This means setting the boundary node to zero

will not be appropriate. In other words, the travelling waves at the boundary do not

incur an inverting re
ection. For the case of the standard rectilinear mesh we may

consider approximating the boundary condition on the spatial derivative by setting

Pi;j;k(n) � Pi+1;j;k(n) = 0, that is Pi;j;k(n) = Pi+1;j;k(n). Then the FDS of equation

(3.1) becomes

Pi;j;k(n+ 1)� 2Pi;j;k(n) + Pi;j;k(n� 1) =
1

3

h
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i
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3

h
Pi;j+1;k(n)� 2Pi;j;k(n) + Pi;j�1;k(n)

i
+

1

3

h
Pi;j;k+1(n)� 2Pi;j;k(n) + Pi;j;k�1(n)

i
: (3.3)

Now terminating our mesh in the x-direction with a non-inverting self loop (so that

P+
i;j;k;0(n) = P�

i;j;k;0(n � 1)) means the junction velocity calculation may proceed as

follows
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Figure 3-5: Boundary Conditions for Square Mesh

and this is quite clearly identical to the FDS of equation (3.3). Such self-loops model a

spatial distance of half a spatial sample out to the boundary, and half a spatial sample

back. In our simulations we shall also be considering the use of rimguides to model

spatial distances other than a half.

3.3.2 Sensitivity of Resonant Modes to Changes in Room Size

Before we begin our discussions on simulation of acoustic spaces using either the square

or dodecahedral meshes, it is important to make note of a few points regarding the

expected resonant modes of a particularly shaped room. Beginning with a cubical

room, we may calculate its resonant modes using the following equation derived in

Appendix A.1.3,

flmn =
c

2L
(l2 +m2 + n2)

1

2 : (3.4)

Table 3.2 shows the values of the resonant modes for small changes in room length.

Note that the fundamental mode can change by up 13Hz while the 8th mode moves

by almost 40Hz. However the change in length would be almost inperceptible to the

human eye.

A similar sensitivity can be observed for cylindrically shaped spaces. In this case

the resonant modes of a cavity of radius r metres and height h metres can be calculated
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Mode L = 0:5m L = 0:51 L = 0:52

f1 344:0 337:3 330:8
f2 486:5 477:0 467:8
f3 595:8 584:1 572:9
f4 688:0 674:5 661:5
f5 769:2 754:1 739:6
f6 842:6 826:1 810:2
f7 973:0 953:9 935:6
f8 1032:0 1011:8 992:3

Table 3.2: Resonant Modes for di�erent sized square enclosures.

Mode h = 0:5m; r = 0:25m h = 0:52m; r = 0:26m

f001 344:0 330:8
f002 688:0 661:5
f010 839:1 806:9
f011 906:9 872:0
f003 1032:0 992:3
f012 1085:1 1043:4
f013 1330:1 1278:9
f004 1376:0 1323:1

Table 3.3: Resonant Modes for di�erent sized cylindrical enclosures.

using

fmnl =
c

2�

s��mn

r

�2
+

�
l�

h

�2

; (3.5)

where �mn is the nth zero of J 0m, the derivative of the m
th Bessel Function. The values

of �0n for n � 4 are

�01 = 3:83171; �01 = 7:01559; �01 = 10:17347; �01 = 13:32369:

Expected modes for some small changes in the dimensions are shown in Table 3.3 where

we excite the air along the central axis of the cylinder. In this instance the change in

the circular modes is quite large. Thus we anticipate that it will be important to

model correctly the circular boundary. In general, we may expect that due to direction

dependent dispersion error in both the square and dodecahedral meshes we may �nd

it diÆcult to model correctly all the modes for a given space.
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Mode Modelled Expected (length lm) Mag Error Expected (length l)

f100 335 335:0 0:0 344:0
f110 474 473:7 0:3 486:5
f111 580 580:2 0:2 595:8
f200 668 669:9 1:9 688:0
f210 748 749:0 1:0 769:2
f211 819 820:5 0:5 842:6
f220 946 947:4 1:4 973:0

f221 = f300 998 1004:9 6:9 1032:0
f310 1053 1059:2 6:2 1087:8
f311 1106 1110:9 4:9 1140:9
f222 1160 1160:3 0:3 1191:7
f320 1204 1207:7 3:3 1240:3
f321 1250 1253:3 3:3 1287:1

f322 = f410 1324 1339:8 15:8 1376:0
f330 1380 1381:1 1:1 1418:3
f331 1416 1421:1 5:1 1459:5
f332 1486 1498:0 12:0 1538:4

Table 3.4: Performance Evaluation for Square Mesh.

3.3.3 Simulation of a Rectangular Space

We begin by considering a model for a cubical room of length l = 0:5 metres. Working

at a sample rate of fs = 22050Hz, the size of a spatial sample in the mesh may

be calculated as � =
p
3c
fs

� 0:0270216 where the speed of sound was taken to be

c = 344ms�1. The required mesh must therefore have length L = l=� = 18:503716

waveguides.

Using A Square Mesh

Firstly we consider simply �tting a square mesh within the required boundary L, and

implement the boundary simply by applying self-loops at the mesh boundary as de-

scribed previously. Each self loop measures a half spatial sample out to the bound-

ary and a half spatial sample back again. Thus the overall modelled length will be

Lm = 18 + 1 waveguides, or equivalently, lm = 19� = 0:5134104 metres. Conse-

quently this approximation for the boundary will yield an expected fundamental of

f1 = c=2lm = 335Hz. Shown in Table 3.4 are the resonant modes as measured from

the output of our waveguide simulation compared with the expected modes both for a

square space of length lm and a room at the original desired length l. This simulation

is an excellent example to illustrate the dispersion error of Figure 3-1 in action. We ob-

serve very little error in the fundamental mode and the purely diagonal modes f111 and



CHAPTER 3. 3D WAVEGUIDE MESHES 44

Mode Modelled True Mag Error

f100 353 344:0 9:0
f110 493 486:5 5:5
f111 596 595:8 0:2
f200 703 688:0 5:0
f210 776 769:2 6:8
f211 840 842:6 2:6
f220 982 973:0 9:0
f300 1029 1032:0 3:0
f310 1089 1087:8 1:2
f311 1127 1140:9 13:9
f222 1191 1191:7 0:7
f320 1246 1240:3 5:7
f321 1276 1287:1 11:1

Table 3.5: Performance Evaluation for Square Mesh Using Rimguides.

f222, while the horizontal modes f200 and f300 incur the largest error initially. Higher

up the spectrum we see that as a general rule accuracy decreases with frequency and

that the errors are inconsistent, in keeping with the angular dependence of the disper-

sion error. Finally we note that, although this simulation does not model the desired

size correctly, the modes are in keeping with a square space to a reasonable level of

accuracy. We may attribute this level of accuracy to the close relationship between the

boundary shape and the mesh geometry.

Let us now consider the inclusion of fractional length rimguides in an attempt truly

to model the target boundary. Recalling the discussion of section 2.5 we set the mesh

boundary to 0:75 spatial samples smaller all round. That is the mesh �ts within a

boundary of length Lm = l=� � 1:5 = 17:00362 waveguides. The remaining size is

made up by using fractional length rimguides to model the delay to and from the

boundary. The output of such a simulation is presented in Table 3.5. At �rst glance

these results may seem a little disappointing. However, the errors observed here are

certainly smaller than those found when modelling the space by a mesh whose length

was the closest integer number of samples to the desired amount. Again we note the

directional dependence of the dispersion error is clearly prevalent. Furthermore we also

�nd that the sequence of simulated mode frequencies is consistently greater than the

desired frequencies. Thus we may suppose that the modelled space is in fact too small.

When preparing the simulation we found that each rimguide was required to implement

a delay d = 2:50374 samples. Thus the model mesh terminated some 1:25187 spatial

samples from the desired boundary. By simply using 1D waveguides to model this

intermediate space we are e�ectively reducing the mesh density near the boundary,
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Figure 3-6: Frequency Spectrum For Square Mesh.

and consequently the modelled space could e�ectively appear to be too small. We

describe this in more detail in the next section. Finally we note that we observed also

some extraneous modes which can be seen in Figure 3-6 where the circles represent the

true mode positions. Extra modes occur higher up the spectrum in the form of triple

peaks, especially around the 15th mode, although the energy in these extra modes is

small. These super
uous modes are probably generated since the direction dependence

of the dispersion error and imperfection of the allpass �lter cause the cubic shape not

to be completely upheld at all frequencies.

Using the Dodecahedral Mesh

Next we consider simulating our cubic space using a dodecahedral mesh. First we

consider the implementation of the mesh within the target boundary L = l=� with

simple self-loops terminating the mesh. The output of such a simulation is shown in

the left-hand plot of Figure 3-7, where as usual the expected modes are shown as circles.

We found that the mode frequencies observed in the simulation were systematically too

low. This is because the dodecahedral mesh is of a higher density and hence �lls up the

space closer to the boundary. Consequently, the self loops which terminate the mesh

will typically extend outwith the desired boundary. We also note that each mode was

in fact represented by three peaks. This is because the dodecahedral mesh is not the

same in each axial direction, so that it does not naturally �t the boundary. Thus the

simulated space is no longer cubic, but will have a rectangular cross section. Thus we

consider using the fractional length rimguides to improve the square boundary shape.

Such a simulation is summarised by the right-hand plot of Figure 3-7. This plot shows

that the resonant peaks are much better resolved and the although it is not perfect, we

are closer to the desired cubic shape. Futhermore we observed that each of the resonant

mode clusters were centred closer to the desired mode frequency with the rimguides
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Figure 3-7: Frequency Spectra For Dodecahedral Mesh Simulations of Cubic Enclosures.

Mode Modelled True Mag Error

f001 286 286:7 0:7
f010 344 344:0 0:0
f100 436 430:0 6:0
f101 510 516:8 6:8
f110 541 550:7 9:7
f002 570 573:3 3:3
f020 684 688:0 4:0

Table 3.6: Performance Evaluation for Dodecaheral Mesh Simulation of Rectangular

Enclosure.

than without. It is also worth noting that the mode errors were more consistently

spread across the frequency spectrum, generally increasing with increasing frequency,

which was to be expected since the dispersion error of the dodecahedral mesh is much

less direction dependent than its square mesh counterpart.

We have seen that when modelling a cubic enclosure, it is perhaps better to use

a square mesh, since its geometry will naturally �t the boundary shape. However we

also include the results of a simulation of a dodecahedral mesh applied to a rectangular

enclosure. The space we chose had length l = 0:4m, width w = 0:5m, and height h =

0:6m. Results of the simulation are shown in Table 3.6 where the observed resonances

are compared against the expected mode frequencies as calculated using equation (A.3).

A good level of accuracy is achieved despite the nature of the boundary.

3.3.4 Simulation of a Cylindrical Space

Let us now consider application of our mesh structures to the problem of simulating a

cylindrical enclosure. This type of enclosure will require to be modelled when dealing

with the drum model in the next chapter. We chose a cylinder of radius r = 0:25
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Mode Modelled Expected (hm, rm) Mag Error Expected (h, r) Mag Error

f001 335 335:0 0:0 344:0 9:0
f002 668 670:0 2:0 688:0 20:0
f010 823 823:0 0:0 839:1 16:1
f011 889 888:6 0:4 906:9 17:9
f003 998 1005:1 7:1 1032:0 34:0
f012 1062 1061:3 0:7 1085:1 23:1
f013 1297 1299:0 2:0 1330:1 33:1
f004 1323 1340:1 17:1 1376:0 53:0

Table 3.7: Performance Evaluation for Cylinder Using a Square Mesh .

metres and height h = 0:5 metres for our test case. The true resonant modes may

be calculated from equation (3.5) and are listed in Table 3.3. As with the case for a

rectangular room we apply our models at a sample rate fs = 22050Hz resulting in a

spatial sample size � = 0:0270216. Consequently the ideal mesh should have radius

R = 9:251870 waveguides and height H = 18:50374 waveguides.

Using The Square Mesh

We begin with a square mesh. First of all we consider �tting the mesh within the

desired ideal boundary, and terminating with simple self-loops, so as to impose an non-

inverting re
ection at the boundary. Consequently we may expect our mesh to have

an operational height hm = (18 + 1)� = 0:5134104 metres as encountered previously

when modelling the cubic enclosure. Results of the simulation are summarised in

Table 3.7 when the mesh was excited along the central axis. We compare the results

to two expected outputs. First we consider the expected output for a cylinder of

height hm and whose radius matches that predicted by the �rst circular mode, that

is rm = 0:2549. A cylinder of this radius should provide a fundamental circular mode

f010 = 823Hz. Also note that rm � (9+ 1
2
)� which is an approximation to the average

radius around the staircase boundary imposed by the mesh. We also include the desired

modes for the real cylinder for comparison. While the mode positions are quite clearly

inaccurate when compared to the desired modes of the given cylinder, there remains

a self-correctedness about the modes when compared to a cylinder of height hm and

radius rm. This shows that although the mesh is slightly too large, it has roughly

modelled a cylindrical shape. Again, we note that the magnitude of the error increases

with frequency and behaves according to the dispersion error.

We now consider the introduction of rimguides in order to model a cylinder of the

desired dimensions. The results of our simulation are shown in Table 3.8. As with

the case for the square mesh we note that the frequencies of the modes are systemati-
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Mode Modelled Expected (h, r) Mag Error

f001 352 344:0 8:0
f002 700 688:0 12:0
f010 869 839:1 29:9
f011 926 906:9 19:9
f003 1041 1032:0 9:0
f012 1111 1085:1 25:9
f013 1360 1330:1 29:9
f004 1370 1376:0 6:0

Table 3.8: Performance Evaluation for Cylinder Using a Square Mesh With Rimguides.

Modelled Boundary

True Boundary

Mesh Boundary

True Boundary

Figure 3-8: Boundary implementations at the circular boundary of a cylindrical enclo-

sure using a square mesh.

cally too high. Again we discovered that the mesh was terminated quite far from the

boundary, resulting in relatively long rimguide lengths, particularly when dealing with

the circular boundary. The resultant loss in mesh density near the boundary means

the modelled space is slightly too small. This problem is less severe near the vertical

boundaries at the top and bottom of the cylinder, and consequently these modes are

more accurately modelled.

A comparison of the two boundarymethods, the staircase boundary and the rimguide

method, is summarised in Figure 3-8. This clearly show that the e�ective modelled

shape using the staircase method is too large, and not truly circular, but that the mesh

�lls much of the space. The right hand plot of Figure 3-8 shows that using rimguides

will compromise the mesh density, since the rimguides must be of at least 0:75 spatial

samples long. Consequently the mesh will consist of fewer nodes, and the the modelled

space will appear a little too small, giving mode frequencies which are too high.

Using the Dodecahedral Mesh

Finally we apply the dodecahedral mesh to the problem of modelling the cylindrical

air cavity. Shown in Table 3.9 are the positions of the resonant modes observed in
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Mode Expected Modelled Mag Error Modelled (Rimguides) Mag Error

f001 344:0 331 13:0 341 3:0
f002 688:0 662 26:0 676 12:0
f010 839:1 832 7:1 858 18:9
f011 906:9 889 12:9 907 0:1
f003 1032:0 989 43:0 1000 32:0
f012 1085:1 1059 26:1 1085 0:1
f013 1330:1 1290 40:1 1326 4:1

Table 3.9: Performance Evaluation for Cylinder Using a Dodecahedral Mesh.

simulations using a simpli�ed staircase boundary, and when applying rimguides. Using

rimguides clearly improves the quality of the simulation over the simpli�ed case, and

indeed o�ers generally improved results over the same simulation using a square mesh.

Inconsistencies in the errors are mostly due to non-regularity of the dodecahedral mesh

structure. Recall that this means straight edges (edges perpendicular to the axial

directions), of which the cylinder has two, are not naturally well represented using the

dodecahedral mesh structure.

3.4 Conclusion and Discussion

In this chapter we have discussed the application of two mesh structures to the prob-

lem of 3D acoustic modelling. We described the 3D-square and dodecahedral mesh

structures and showed each was equivalent to a FDS for the 3D wave equation. Conse-

quently we were able to compare dispersion characteristics and conjectured that, due to

a smaller direction dependence of the dispersion error, the dodecahedral mesh structure

would be preferred. It is also probable that this mesh structure should exhibit a larger

usable bandwidth, due to its increased density, much in the same way that a triangular

mesh o�ered a larger bandwidth than a square mesh in 2D [18]. We then went on to

discuss practical implementations of these mesh structures and considered modelling

cubic, rectangular and cylindrical enclosures of air. We found that we could generally

improve the quality of the simulations using rimguides. However we also highlighted

a drawback with the rimguides, in that for certain boundaries, due to the minimum

delay imposed by the allpass �lter, we often required rimguides of quite a long length.

This meant we compromised mesh density near the boundary and hence were unable

to achieve as high a level of accuracy as was desired. Furthermore, we observed that

the choice of mesh structure was also dependent on the shape of the space. Square

and cylindrical spaces have boundaries at right angles to the axial directions, thus the

square mesh naturally �tted this boundary quite well. In general however, for a more
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arbitrary boundary shape, the dodecahedral mesh structure would be preferred. For

example the dodecahedral mesh has been implemented to good use to model the near

hemi-spherical boundary in a kettle drum in [27].



Chapter 4

Building a Drum Model

In this chapter we demonstrate a method which will allow us build complete models of

musical instruments. We propose to use two and three dimensional waveguide meshes to

model each constituent part of the instrument and we describe an interfacing technique

which will be used to connect these together. The process is described in the context

of modelling a tom-tom drum [15], and the method was �rst described in [3]. The work

has since been extended by Laird to provide an accurate model for a kettle drum [27].

4.1 Setting up the Simple Drum Model

To demonstrate the principles behind the interfacing method, we restrict our model by

representing only the interactions of the two skins and the interior air. Each skin is

modelled as an ideal membrane using a triangular waveguide mesh, while the cylindrical

interior column of air is modelled using, for the purposes of simplicity, a 3D square

mesh. The model presented in [27] uses a dodecahedral mesh, and a full derivation of

the interfacing technique, both for interfacing 2D meshes of di�erent geometries, and

meshes in di�erent dimensions, is given.

4.1.1 Interfacing 2D and 3D Meshes at an Impedance Discontinuity

There are two problems to be faced when attempting to represent the passage of energy

between the membrane and the surrounding air. Firstly, the impedance of the mem-

brane will be di�erent to that of the air, and secondly the densities and geometries of

each mesh will be di�erent. The �rst problem is easily solved since the waveguide scat-

tering junction is equipped (by design) to connect waveguides of di�ering impedances.

Thus we consider creating the triangular membrane mesh, not from 6-port junctions,

but using 7-port junctions, 6 of which carry the membrane impedance Zm and sit in a

51
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Figure 4-1: Membrane Mesh Scattering Junction

Mesh fs (Hz) Wave Speed c ms�1 K(0) � Number of Nodes

Membrane 11025 80:03 1p
2

0:01078 18:55288

Air 11025 344 1p
3

0:05404 3:70096

Table 4.1: Comparison Of Model Parameters in the Drum Model.

2D plane, and the 7th of which extends downwards or upwards towards the air mesh,

and carries the air impedance Za. Consideration will be given to the calculation of the

impedances in section 4.1.2. This scattering junction structure is shown in Figure 4-1.

The other problem we encounter may be easily highlighted using a couple of quick

calculations. The size of a spatial sample in a waveguide mesh may be calculated as

� = K(0)cT , where K(0) is the nominal speed of wave propagation in spatial samples

per sample interval, c is the true speed of wave propagation in metres per second, and

T = 1=fs where fs is the sample rate. Thus, given a drum radius of r metres, the

radial number of spatial samples required may be calculated as D = r=�. If we set the

tension of the membrane to F = 1850N=m, the density to � = 0:262kg=m2 and the

radius as r = 0:2m then di�erences in the required mesh parameters are summarised

in Table 4.1. Clearly the membrane mesh will require many more nodes than the air

mesh. A pictorial representation of this disparity is shown in Figure 4-2. Note the

inclusion of the rimguides as discussed in the previous section.

The Air to Skin Interface

To create the interface from skin to air, we assume that the junction pressure at an

air mesh node near the membrane is constant over an element of area A = l2a centered

over the air mesh node, where la is the length of a unit waveguide in the air mesh.

By doing this we are approximating the incoming pressure front to the membrane by

a piecewise constant function. We now use this constant pressure value to calculate

output pressure values in the direction of each of the membrane nodes which are placed
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Figure 4-2: Membrane Mesh with Underlying Air Mesh.
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Figure 4-3: The Air to Skin Interface.

spatially over this air mesh node. To convert to a transverse velocity, we must divide

by the air impedance Za [21]. Finally, since this represents pressure over an element

of area A, and if there are n velocity nodes associated to this portion of the air mesh,

we must scale each membrane nodes air impedance by A=n. Note that the value n is

not necessarily constant for each air mesh node. We may now compute the membrane

mesh junction velocity using the scattering junction equation as

vj(n) = 2

 P6
i=1 Zmv

+
j;i
(n) + ZaA

n
v+
j;a

6Zm + ZaA

n

!
;

where v+
j;i

is the incoming velocity from the neighbouring membrane nodes, and v+
j;a

is

the incoming velocity from the air. Figure 4-3 shows a side-on view of the interface.

The Skin to Air Interface

We may now consider the interface from skin to air by referring to Figure 4-4. Since

each membrane node had an input velocity from the air mesh, we can calculate the

re
ected velocity back in the direction of the air using equation (2.8). We may then

convert these velocities into pressures by multiplying by the air impedance Za. Thus,
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Figure 4-4: The Skin to Air Interface.

for each air mesh node, we must include n new inputs to replace the vertical input. To

avoid an impedance discontinuity, each waveguide connecting to the membrane mesh

must have an impedance Za=n, giving a junction pressure equation

pj(n) =
2

6Za

 
5X
i=1

Zap
+
j;i
(n) +

Za

n

nX
k=1

p+
m;k

(n)

!
; (4.1)

where p+
j;i
(n) are the input pressures from within the mesh, and p+

m;k
(n) are the n input

pressures from the membrane. This is entirely equivalent to taking the average of the

n pressures coming from the membrane and placing the resulting value at the vertical

input of the air mesh node. This can be more easily deduced by rearranging equation

(4.1) as

pj(n) =

P5
i=1 p

+
j;i
(n) + 1

n
p+m(n)

3
;

where p+m(n) is the sum of the n inputs from the membrane. Now, each of the n inputs

from the membrane are stored in memory in order to compute the re
ected pressures

back in the direction of the membrane. Note that the length in units of delay for each

of the waveguides attaching each air mesh node to the membrane mesh is the same

(this could include a fractional delay), thus the interface can be thought of in terms of

Figure 4-3. Figure 4-4 however helps explain how all the connections to the membrane

nodes act as the vertical input to the air mesh node.

4.1.2 Computed Membrane Impedance

The description of the proposed interface method has been based on representing the

impedance discontinuity between the drum skin and the air. We discussed string

impedance in section 1.3.3 where it was shown that the force and velocity waves are

related via the constant Z =
p
F�. In the case of a membrane however, the impedance

cannot be de�ned by considering the ratio of force and velocity. This is because a �nite
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force applied at an interior point on the membrane will result in an in�nite de
ection

as described in Appendix A.1.2. Consequently it is necessary to describe any driving

forces as being distributed over a �nite area of the membrane, as opposed to being

applied at a point. It has been computed in [27] that the impedance of an element in

the triangular waveguide mesh is

Ze =

r
3

2

F

fs
;

where F is the tension applied to the membrane, and fs is the model sampling rate.

Consequently the impedance of each waveguide within the mesh is simply

Zm =
Re

3
=

r
1

6

F

fs
:

Finally, we also note that the area of an element of the triangular mesh is

Am =
p
3
c2

f2s
: (4.2)

This choice for the impedance value is justi�ed later when we analyse the output from

the drum model.

4.2 Simulation Results

In order to assess the accuracy of the proposed interfacing technique we considered

building a model for a tom-tom drum using two membrane mesh models and a 3D

rectilinear mesh for the enclosed cylinder of air. For simplicity each membrane was set

to have the same super�cial density and be held at the same tension. We identi�ed

three criteria by which we could assess the accuracy of the model. Firstly, the interior

air cavity should resonate according to its shape (and should thus exhibit resonances

consistent with a cylindrical air cavity). Secondly, we considered the transmittance

of energy through the air to the lower membrane, where the lower membrane should

vibrate as the upper one. Finally, by modelling an interaction between skin and air,

we should expect the presence of an air load. This should contribute to a lowering of

the fundamental frequencies of vibration.

4.2.1 Correctly Modelling the Cylindrical Air Cavity

By forcing the velocities of each membrane mesh to zero in the drum model, we may

examine the output from only the air within the drum. Each membrane acts as a pure
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Mode Modelled Expected r = 0:2, h = 0:54 Expected r = 0:218, h = 0:506

f001 340 318 340
f002 674 636 680
f010 961 1049 961
f003 997 954 1020
f011 1003 1096 1019
f012 1173 1227 1177
f004 1300 1272 1360

Table 4.2: Comparison of measured and expected modes in drums air cavity.

re
ection via the interface between the membranes and the air. Thus the accuracy of

the interface can be assessed. Note that the interface connections impose a distance of

one waveguide between each membrane mesh and the air mesh so that the modelled

height will always be greater than the desired height. In the future we could incorporate

a fractional delay �lter in order to correctly model this height. In the meantime we may

consider our drum model when the model height is H = 8 waveguides. Because of the

extra two spatial samples incurred during the interfacing procedure, the e�ective height

is in fact H = 10 waveguides. Given a spatial sample length � =
p
3c=fs = 0:0540431

metres, where fs = 11025Hz, the resulting drum should have height h = 0:540431

metres. We may thus make an analysis on the vertical modes of the cylinder of air

represented by our model. Table 4.2 describes the output of such a simulation. Note

that the cylindrical boundary was implemented by bounding the mesh at a radius

r = 0:2 metres, which corresponds to a distance of R = 3:7 waveguides, and that the

mesh was terminated by simple self-loops as described in the previous chapter. In the

complete drum model we would also wish to include fractional length rimguides in

order to more accurately model the circular boundary, but since in this analysis we are

merely concerned with the performance of the interface at the vertical boundary, we

may disregard those considerations here and concentrate mainly on the vertical mode

frequencies.

In order to assess the performance of the interfacing technique, we consider only

the �rst four vertical modes f001 : : : f004 which are listed in the left most column in

Table 4.2. By comparison with the desired modes in the next column we see that the

interfacing technique has caused an increase in all of the modes under observation.

However, the fundamental horizontal and cylindrical mode (f010) is consistent with

a cylinder of radius r = 0:218 and height h = 0:506. Comparing the drum output

with the expected modes of a cylinder with these dimensions, we see that a cylindrical

nature is roughly preserved and there is again evidence of dispersion error. We also

note that the error is larger than that found for a similar model described in Table 3.7
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in section 3.3.4. This is due in part to the interface method, but also in part to the

lower sample rate employed in the drum model.

Thus we conclude that with our interfacing procedure in place, we may model

a cylindrical enclosure of air to a reasonable level of accuracy, and that the averag-

ing/interpolation occurring at the boundary between the 3D and 2D meshes causes a

uniform increase in the horizontal modes of vibration. From Table 4.2 we observe an

accuracy of within 2:25% up to 1000Hz. This level of accuracy could be improved by

increasing the sample rate. For the piecewise constant interpolation employed in this

model we should expect to halve the interpolation error when doubling the sample rate.

The uniform increase in the frequencies of vibration suggest that the modelled space

is too small. This could be because we have not implemented the interface near the

circular boundary. We also note that since we have not included rimguides in the ter-

mination of the 3D mesh, the e�ective radius is too large, as was observed in chapter 3,

and consequently the �rst circular mode is too small.

A greater level of accuracy could be achieved by implementing the model at much

higher sample rates. The nature of the �nite di�erence approximations, as described

in Appendix B show how the output of the FDS will converge to the true solution as

the spatial and time steps tend to zero.

4.2.2 Results from the Complete Drum model

To evaluate the overall output from the drum model we will examine measured outputs

from each of the skins, and from the interior of the drum (something that is easy to

do in a simulation, but perhaps harder to do in reality). First we recall the output

from a simple membrane in vacuo as shown in the plots of Figure 4-5, where the left

hand plot is for a membrane struck at its centre and the right hand plot represents

the output of a membrane struck o� centre. We chose to model a membrane of radius

r = 0:2 metres, density � = 0:262kg=m2 and held at a tension F = 1850N=m. We

discussed membrane simulations in chapter 2 where we concluded that the inclusion of

rimguides would improve the quality of the simulation, and that errors in the positions

of the modes were consistent with the dispersion error. Using these parameters the

fundamental frequency should be f01 = 160:8Hz.

The left hand plot of Figure 4-6 shows the output of the drum model as measured

as an average of all the velocities on the top skin, while the right hand plot measures

the bottom skin. The drum depth has been set at approximately h = 0:5m. We say

approximately in view of the discussion in the previous section, where we saw that

setting the drum height to 8 waveguides e�ectively gave cylindrical mode frequencies

consistent with a cylinder of height h = 0:506m. First of all we observe that each
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Figure 4-5: Membranes Struck at Centre and O� Centre.
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Figure 4-6: (a) Drum model output measured from top skin. (b) Drum model output

measured from Bottom skin.

plot is almost identical, thus the air is transmitting the vibrations of each skin to its

counterpart at the opposite end of the drum. Secondly we regard the properties of

the output. We note that there is a sequence of strong peaks which we can identify

with the resonant modes of the membrane, but that the fundamental frequency has

dropped, and subsequent modes are also lower. This is consistent with the expected

behaviour due to the air load and we discuss this in more depth later. We could

expect this phenomena to be even more noticeable were we to model the surrounding

air around the drum as well [15], however we leave that to further study. We also note

the inclusion of new modes of vibration. In fact the distribution of frequencies is much

more consistent with that of a membrane excited in all its modes of vibration, not just

its central modes as shown in the right-hand plot of Figure 4-5. Thus we conclude that

the inclusion of the resonating chamber has caused other modes of vibration near the

central modes to be excited also.
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Membrane Drum (One Skin) Drum (Two Skins)

Mode (mn) fmn fmn=f11 fmn fmn=f11 fmn fmn=f11
01 160 0:63 151 0:75 108 0:55
11 254 1:00 199 1:00 198 1:00
21 341 1:34 285 1:43 286 1:44
02 366 1:44 356 1:79 317 1:60
31 423 1:67 376 1:89 356 1:70
12 466 1:84 388 1:95 387 1:96
41 503 1:98 423 2:13 410 2:07

Table 4.3: Output from the Drum Model

4.2.3 Modelling the Air Load

We brie
y discussed the e�ect of an air load on a membrane in the previous section

and now consider this property in more detail. In general the presence of an air load

will e�ectively raise the density of the membrane, and hence lower the frequencies of

vibration. This phenomenon is typically frequency dependent, and the lower frequencies

are a�ected more. If the air is con�ned in some way, such as by the kettle in a tympani

drum, or by the shell and lower skin of a tom-tom drum, then we should expect a rise

in the axisymmetric modes, in particluar the (01) mode [15].

We discuss the output of our model with respect to this desired behaviour, and

also by comparing to measured output in [15]. Table 4.3 describes the output of our

tom-tom drum model in terms of mode frequencies and the sequence of ratios of the

mode frequencies. We considered two simulations, one where both skins were allowed

to vibrate, and one where the lower skin was held at zero to act as a rigid termination.

The second of these simulations allowed us to examine the e�ect of an enclosed air

load. Shown in Table 4.4 are measured output from experiments reported in [15].

They describe the pattern of mode frequencies measured from a membrane with and

without a tympani kettle attached. We note that these measurements also include the

e�ect of the external air load, contrary to our model which represents only the interior

air.

Beginning with the drum model where one skin is held rigid, we see, from Table 4.3,

a lowering of all the mode frequencies and a reordering of the partials. The ratio of the

fundamental mode, the (11) mode for membranes, to the other frequencies is raised.

This is similar to the general behaviour encountered for the membrane with kettle, as

described in Table 4.4. Now, examining the output of the drum model with two skins,

we �nd a greater lowering of the mode frequencies than the case with only one skin,

although the fundamentals are almost identical. The ratio f11 : f01 is lower than the

one skin case, as are the ratios f11 : f02, f11 : f31, f11 : f22 and f11 : f41. This di�erence
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With Kettle Without Kettle

Mode (mn) fmn fmn=f11 fmn fmn=f11
01 140 0:81 92 0:54
11 172 1:00 173 1:00
21 258 1:50 253 1:47
02 284 1:65 266 1:54
31 340 1:97 330 1:91
12 344 2:00 365 2:12
41 420 2:44 408 2:36

Table 4.4: Measured output from Real Drums

in the ratios is similar to that found when comparing the membrane with kettle to the

membrane without. In particular, note that including a second skin has lowered the

ratio f11 : f01 quite signi�cantly, as has removing the kettle, while in both cases the

ratio f11 : f12 has been raised.

It is interesting to note how the presense of the air load in a tympani drum serves to

convey a sense of pitch in the output sound. In Table 4.4 the ratios of the frequencies

1:00 : 1:50 : 1:97 : 2:44 is nearly harmonic. An investigation into this introduction of

harmonicity could be an interesting experiment using the drum model for the future.

4.3 Conclusion and Discussion

In this chapter we have described a technique by which we may interface a 2D and 3D

waveguide mesh and applied the method in a model for a tom-tom drum. We observed

a behaviour qualitatively similar to the expected by considering the transmission of

pressure waves from top skin to bottom skin and the interior resonances. The model

was implemented at quite a low sample rate (fs = 11025Hz) and much improved

accuracy could be achieved by increasing the sampling resolution. We went on to show

that the model seemed to be representing air loading on the membrane. We compared

the model with measured output from an air loaded membrane and tympani drum,

and saw a qualitative similarity. The results are certianly encouraging, and seem to

show that the interface method can be used to model air loading and indeed be used

to design drum models. Di�erences between our model and measured output could be

due to simpli�cations in the model. We have included only the interface between the

membranes and the interior air, plus we neglected other e�ects such as dispersion and

internal damping of the membrane. Furthermore, each of the membranes in the drum

model will su�er from dispersion error. Consequently we have only been able to provide

a qualitative comparison between modelled and measured outputs. A more accurate
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tympani drum model has been designed using digital waveguide meshes connected with

the interface technique described here [27]. In this study the model was compared to

a Finite Element Method (FEM) model and was shown to perform reasonably well.



Chapter 5

1D Models Including Material

Properties

The models presented so far have been shown to work well for ideal wave propagation

in 1D and 2D. We have also shown that simple musical instrument models can be con-

structed using simple waveguide meshes. However, real instruments vibrate in a much

more complicated manner where material properties such as sti�ness are important.

Examples include the vibrating bars in xylophones or thick sti� strings in pianos. We

have already observed in our model for a drum in chapter 4 that the sequence of res-

onant frequencies was heavily a�ected by the sti�ness of the drum skin, which for a

tom-tom drum was prevalent since the skins are typically thicker than those found in

tympanis. In general sti�ness causes a non-constant speed of wave propagation, with

the higher frequencies travelling faster, and this causes a spreading out of the higher

mode frequencies.

It has been theorised that sti�ness may be simulated using allpass �lter banks

placed at the re
ection of a digital waveguide [6, 37, 48, 53]. Such an approach uses

the non-linear phase property of the allpass �lter (Appendix C.2.1) in order to alter the

wave speed characteristics, essentially speeding up the higher frequencies. It has been

shown that this provides a reasonable simulation for sti� strings however, the model

has little physical signi�cance and the �lter coeÆcients must be statistically matched

to the expected phase response of the true system. Furthermore the method could not

be extended to model sti� bars where the DC wave speed will be zero.

In this chapter we describe and discuss some explicit waveguide models for vibrating

bars and sti� strings which represent numerical simulations of the sti� bar and sti�

string PDEs described in Appendix A.2. The models are formed by using coupled

interleaved waveguide models for two-variable systems which are equivalent to the

62
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governing equations. The methods described here were originally proposed in [8] and

extended in [1, 2].

5.1 Interleaved Digital Waveguides

In order to design waveguide models for the more complicated systems describing the

sti� bar or plate, we consider a new waveguide formulation called an interleaved waveg-

uide. Such a structure is useful since it makes use of two separate wave variables. In the

case of the ideal string, we de�ne the transverse velocity by v = @u

@t
, and de�ne a force

term i = �F @u

@x
, where F is string tension. Note how the force term is proportional to

string slope, with tension as the proportionality constant. Such a de�nition is intuitive

when we think of the derivation of the 1D wave equation in Appendix A.1.1. Thus we

may decouple the 1D wave equation into a system of PDEs

@v

@t
= �1

�

@i

@x

@i

@t
= �F @v

@x
: (5.1)

This alternative approach to representing the wave equation was presented in [8]

where it is presented in its equivalent form as a special case of the transmission line

equations [12]. In this instance the two variables are voltage u and current i,

l
@i

@t
+
@u

@x
+ ri+ e = 0;

c
@u

@t
+

@i

@x
+ gu+ h = 0: (5.2)

The special case where r = e = g = h = 0, and l and c are constant, reduces to the

standard 1D wave equation

l @i
@t
+ @u

@x
= 0

c@u
@t

+ @i

@x
= 0

)
) @2u

@t2
=

1

lc

@2u

@x2
: (5.3)

Thus we may identify velocity as a voltage like variable, while force may be consider a

current like variable.

Now, the interleaved waveguide which models the system of equation (5.1) must be
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Figure 5-1: Interleaved Waveguide.

equivalent to the centered FDS

I
j+ 1

2

(n+
1

2
)� I

j+ 1

2

(n� 1

2
) = ��F (Vj+1(n)� Vj(n)) ;

Vj(n)� Vj(n� 1) = ��1
�

�
I
j+ 1

2

(n� 1

2
)� I

j� 1

2

(n� 1

2
)

�
; (5.4)

where � = T=�.

The corresponding interleaved waveguide is constructed by splitting each unit of

delay between junctions on a standard 1D waveguide into two half units of delay within

which we place a series junction and add a sign inversion as shown in Figure 5-1. This

gives a construction including extra junctions at which junction force may be computed.

We recall from chapter 2 that velocity and force travelling waves are related as follows

V + = ZI+ ) I+ = Y V +

V � = �ZI� ) I� = �Y V �; (5.5)

where Z is the impedance of the delay line, with admittance Y = 1=Z, and where as

usual a superscript + denotes an incoming wave to a scattering junction, with a �
denoting an outgoing wave.

Just as was the case in previous chapters, we may derive a relationship between

incoming velocity or force waves at a particular junction in terms of output waves at

neighbouring junctions. For velocity waves the relationship is simple,

V +
j;0(n) = V �

j+ 1

2
;1
(n� 1

2
);

V � + j; 1(n) = V �
j� 1

2
;0
(n� 1

2
): (5.6)
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while for force waves

I+
j;0(n) = Y V +

j;0(n)

= Y V �
j+ 1

2
;1
(n� 1

2
)

= �I�
j+ 1

2
;1
(n� 1

2
) (5.7)

and similarly

I+
j;1(n) = �I�

j� 1

2
;0
(n� 1

2
): (5.8)

Thus we observe that force waves travel with a sign inversion.

Referring to Figure 5-1 we use equations (5.5), (5.6), (5.7) and (5.8) to manipulate

the junction velocity equation,

Vj(n) = V +
j;0(n) + V +

j;1(n)

= Z
�
I+
j;0(n) + I+

j;1(n)
�

= �Z
�
I�
j+ 1

2
;1
(n� 1

2
)� I�

j� 1

2
;0
(n� 1

2
)

�

= �Z
�
I
j+ 1

2

(n� 1

2
)� I

j� 1

2

(n
1

2
)

�

+ Z

�
I+
j+ 1

2
;1
(n� 1

2
)� I+

j� 1

2
;0
(n� 1

2
)

�

= �Z
�
I
j+ 1

2

(n� 1

2
)� I

j� 1

2

(n� 1

2
)

�
+ V �

j;0(n� 1) + V �
j;1(n� 1)

= �Z
�
I
j+ 1

2

(n� 1

2
)� I

j� 1

2

(n� 1

2
)

�
+ Vj(n� 1); (5.9)

which is equivalent to the second of the expressions in equation (5.4) when we set

Z = �

�
. Similarly we may begin from a series junction representing junction force to

get

I
j+ 1

2

(n+
1

2
) = � 1

Z
(Vj+1(n)� Vj(n))� I

j+ 1

2

(n� 1

2
); (5.10)

where we require Z = 1
�F

for equivalence with equation (5.4). Consequently we may

choose Z =
p
F�, giving � =

q
F

�
. Note that this is exactly as was the case in the

original waveguide formulation. Furthermore, since the impedances and admittances of

each waveguide are the same, the extra series junction becomes merely a `through' with
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a sign-inversion [7], and that the impedances at the velocity junctions are arbitrary and

we reduce once again to the standard waveguide. However this formulation is useful in

the case of spatially varying parameters, and will also form the basis of our discussions

on modelling more diÆcult systems.

5.2 A Digital Waveguide Model for the Euler-Bernoulli

Beam

In this section we describe a digital waveguide network which models the Euler-Bernoulli

formulation for an ideal bar as described in Appendix A.2. In this thesis we restrict

ourselves to a detailed treatise on this formulation as opposed to the more accurate

formulations of either Rayleigh or Timoshenko [20]. We do this for two reasons. Firstly,

as was the case when formulating the drum model in the previous chapter, we wish

to retain a certain level of simplicity. This makes the physical comparisons clearer,

making it is easier to see how these individual models �t into the larger framework

we are developing, and making the visualisation of extensions to two dimensions, plus

inclusion into complete instrument models, a little more straightforward and intuitive.

Secondly, it has been remarked that the simpli�ed theory is valid, to a �rst degree of

approximation, in the low frequency range, when compared to measurements on real

instruments [11].

The model we assess and describe was �rst presented in March 2001 by Stefan Bil-

bao [8]. In this section we describe the model and its physical signi�cance (that is, how

it could be designed using a little intuition). We show that the model is equivalent to

a FDS for the underlying PDE and we examine its accuracy by comparing its disper-

sion characteristics with that of a real bar, and examine the frequency spectrum of its

output. What we present here is a slightly simpli�ed version which does not account

for any spatial variation in parameters. Hence the PDE we consider, as described in

Appendix A.2, is

@2u

@t2
= �EI

�A

@4u

@x4
; (5.11)

where � is the materials density, E its Young's Modulus, and I the moment of gyration

about the beam's perpendicular axis. If we were to consider spatial variation of the

parameters, the equation would be

�A
@2u

@t2
= � @

@x2

�
EI

@2u

@x2

�
;
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where now EI and �A are both functions of position.

Consider now approaching the problem by decoupling equation (5.11) into a two

variable system. The is done by writing the velocity as v = @u

@t
as before, and this time

we take the force to be m = EI @
2
u

@x2
. We note that since there is no tension, and that

the restoring force is proportional to how much the bar is bent, the force term in this

case is related to the bar's curvature. The de-coupled equation is

@v

@t
= � 1

�A

@2m

@x2

@m

@t
= EI

@2v

@x2
:

By applying centered di�erences to these equations we arrive at the following di�erence

scheme,

Vj(n+ 1)� Vj(n) = � �

�A

�
Mi+1(n+

1

2
)� 2Mi(n+

1

2
) +Mi�1(n+

1

2
)

�

Mi(n+
1

2
)�Mi(n�

1

2
) = �EI [Vi+1(n)� 2Vi(n) + Vi�1(n)] ; (5.12)

where we de�ne � = T

�2 for time step T = 1
fs

and spatial step �, and where fs is the

sample rate of the simulation.

Shown in Figure 5-2 is a diagram of the proposed digital waveguide model for the

Euler-Bernoulli bar. The model is comprised of two coupled interleaved waveguides

arranged so as to allow measurement of each of the wave variables at every spatial

step. In the framework of transmission line modelling, we may think of the variable

V as being voltage-like, while M can be thought of as being current-like. Notice

how the form of the coupling means that at any junction where we calculate M we

are intuitively approximating Vj+1(n) � 2Vj(n) + Vj�1(n), which is of course a �nite

di�erence approximation to the curvature. Furthermore, note that this diagram di�ers

from that in [8] since we have simpli�ed our model to deal only with bars of spatially

uniform material parameters. To include spatially varying parameters we may attach

self-loops to each junction. We shall see later on how these self loops can be used to

alter the dispersion characteristics of any waveguide model. The form of the FDS in

equation (5.12) also indicates why we take half time steps between junctions, and why

we require access to both variables at each spatial step.

Recalling the rules of propagation for the alternate wave variables from the previous

section we now prove the equivalence of the waveguide structure in Figure 5-2 to the

FDS in equation (5.12). We indicate incoming and outgoing velocities to the veloc-

ity junctions by V +
j;0(n); : : : ; V

+
j;3(n) and V �

j;0(n); : : : ; V
�
j;3(n) respectively. The velocities
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impinge upon the junction with impedance Y . Similarly, incoming and outgoing ve-

locities to the force junctions are written as ~V +
j;0(n); : : : ;

~V +
j;3(n) and

~V �
j;0(n); : : : ;

~V �
j;3(n)

respectively, where ~V +
j;i
(n) = ZM+

j;i
(n), ~V �

j;i
(n) = �ZM�

j;i
(n) and Z = 1=Y , according

to the rules for force and velocity waves discussed in section 5.1. Beginning at a force

junction, we may write the total force Mj at junction j as

Mj(n+
1

2
) =

2

Zj

�
ZM+

j;0(n+
1

2
) + ZM+

j;1(n+
1

2
) + ZM+

j;2(n+
1

2
) + ZM+

j;3(n+
1

2
)

�

=
2

Zj

�
~V +
j;0(n+

1

2
) + ~V +

j;1(n+
1

2
) + ~V +

j;2(n+
1

2
) + ~V +

j;3(n+
1

2
)

�
;

where Zj = 4Z is the total junction admittance. Notice that we choose not to cancel Z

in the junction scattering equation above. Now, by using the now standard technique,

we write inputs to the current junction as outputs from adjacent junctions at the

previous time step. By doing this we are able to write the total force Mj at junction j

in terms of velocities and forces of other junctions at other time steps.

Mj(n+
1

2
) =

2

Zj

�
V �
j�1;1(n) + V �

j+1;0(n)� V �
j;2(n)� V �

j;3(n)

�

=
2

Zj

�
Vj�1(n) + Vj+1(n)� 2Vj(n)

�

� 2

Zj

�
V +
j�1;1(n) + V +

j+1;0(n)� V +
j;2(n)� V +

j;3(n)

�

=
2

Zj

�
Vj�1(n) + Vj+1(n)� 2Vj(n)

�

� 2

Zj

�
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2
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1

2
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2
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)
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�
Vj�1(n) + Vj+1(n)� 2Vj(n)

�
+Mj(n�

1

2
): (5.13)
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Now this di�erence equation is identical to that of equation (5.12) if we set

Zj =
2

EI�
:

Similarly we may begin with a velocity junction as follows, where total junction impedance

is Yj = 4Y and again we choose not to cancel,

Vj(n+ 1) =
2

Yj

�
Y V +

j;0(n+ 1) + Y V +
j;1(n+ 1) + Y V +
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�
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�
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2
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which is clearly equivalent to the FDS of equation (5.12) by putting the total junction

impedance

Yj =
2�A

�
:

The two equivalence equations are clearly satis�ed when we set

� =
1

2

r
�A

EI
;

with Y =
p
�AEI. In his thesis Stefan Bilbao carefully describes the choice of
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impedance values for each input to each series or parallel junction when the mate-

rial parameters vary spatially [8]. What we have given here is a generalisation for

constant material values.

5.2.1 Evaluating Dispersion in the Bar Model

Before moving on to a simulation, we discuss expected performance of the model by

considering aspects of the spectral ampli�cation factor for the underlying FDS. This

FDS may be written as

Vj(n+ 1)� 2Vj(n) + Vj(n� 1)

= �b2�2
�
Vj+2(n)� 4Vj+1(n) + 6Vj(n)� 4Vj�1(n) + Vj�2(n)

�
;

where b2 = EI

�A
and �2 = T

2

�4 . Then stability can be assessed by considering the spectral

ampli�cation factor g(w), which is found by solving the following equation.

g2 +
�
16b2�2 sin4(w=2) � 2

�
g + 1 = 0:

Now, writing B = 16b2�2 sin4(w=2)�2, we see that the ampli�cation factor g is always

complex when B2� 4 < 0, that is when � � 1
2

q
�A

EI
. This is also the stability condition

in our model. Thus the ampli�cation factor can be written as

g(w) = �B
2
� i

p
4�B2

2
:

Given the ampli�cation factor we may examine the accuracy of the scheme by

noting that g(w) has unit magnitude. Thus the scheme is lossless and any deviation

from the true solution will be caused by a phase error. The phase of the ampli�cation

factor can be used to calculate the speed of wave propagation in the bar model, as was

done in chapters 2 and 3. This time the wave speed will be frequency dependent and

a comparison of the modelled wave speed with the desired wave speed as calculated in

Appendix A.2.2 is shown in Figure 5-4. We notice a qualitative similarity between the

modelled wave speed (right hand plot) and the desired wave speed, but wave speeds

in the modelled system are systematically too low. To evaluate this deviation more

directly, and to examine how changes in the sampling resolution a�ect the accuracy,

we consider the relative phase [34]. This is calculated as the ratio of the phase of the

FDS to that of the true system, that is,

K(w) =
argfg(w)g

bTk2
;
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Figure 5-4: Comparison of Modelled and True Wave Speeds for the Bar Model.

where, as described in [34], w = k� and

argfg(w)g = tan�1

 p
4�B2

�B

!
:

Resolving the identity for w gives

K(w) =
argfg(w)g
b T

�2w2

=
1

b�

argfg(w)g
w2

: (5.15)

It is worth noting that this quantity is identical to the relative dispersion (or relative

wave speed). In order to calculate dispersion from phase we divide by frequency w, as

was done in chapters 2 and 3. Thus to calculate relative dispersion we would have to

divide both the numerator and denominator of the above expression by w. Thus the

relative phase is a quantity which describes the deviation of the modelled wave speed

from the desired wave speed and where the ideal model would have K(w) = 1 for all

frequencies. In essence we computed the same property previously for non sti� media,

since in those cases the ideal wave speed was a constant.

Shown in Figure 5-5 are some relative phase plots (or equally, relative dispersion)

plots (in Hz) for the bar model for various values of the sample rate fs. We see that

in all cases the accuracy is best over the low frequency range, and that deviation from

the ideal relative phase increases with increasing frequency. Furthermore we note that,

as expected, increasing the sample rate will improve the quality of the simulation.

Since the FDS to which the waveguide model is equivalent uses centred di�erences to

approximate the derivatives, the scheme will converge to the true solution as the sample

rate increases. This means that with an arbitrarily large sampling resolution we could
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Figure 5-5: Relative Phase Plots for the Bar Model.

make the two curves in Figure 5-4 identical.

Changes in the simulation parameters cause only a change in the stability condition,

and hence a change in �, that is, the relationship between between the spatial step size

and the time step. For example, if we were to consider increasing the sti�ness E,

then to maintain the same spatial resolution �, would mean increasing the sample rate

fs, since at the lower limit of stability we have � = 1
2

q
�A

EI
, that is, T = 1

2

q
�A

EI
�2.

Hence increasing E would result in a decrease in the time step T . Thus for highly

sti� systems in order to maintain stability we should expect to need quite high sample

rates. Similarly when we require a low spatial resolution we will also require high

sample rates. A FDS for a bar has been presented in [11]. In this paper they reduce

the spatial step size as low as � = 0:53mm in order to observe convergence to within

0:5% in the output of the scheme. Such a spatial step size in our model would result

in a sample rate of approximately fs = 50MHz, and this is similar to the resolution

adhered to in their paper.

5.2.2 Boundary Conditions

We consider the application of three common boundary types found in the literature:

simply supported, clamped or free. The inclusion of these boundary conditions in

our waveguide model is quite straightforward. Theoretical prediction of the modes of

vibration is based on the boundary type and is discussed in Appendix A.2.

The simplest case is of a simply supported edge, where the bar is �xed, but allowed

to pivot. In this case we set both the velocity and the bending moment at the boundary

to zero so that for a simply supported edge at x = 0 we require to satisfy v(0; t) =

m(0; t) = 0. This may be achieved quite simply by putting the outermost junctions

V0(n) = 0 and M0(n) = 0 for every n. Since energy only enters the edge junctions

from within the waveguide, each of these may be left as a one-port junction, and
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consequently each acts so as to send an inverted signal back. Formally for a simply

supported velocity junction at j = 0, we will have V �0;1(n) = �V +
0;1(n), while for a force

junction at j = 0, M�
0;1(n) = �M+

0;1(n). Note that we may resolve velocity waves at

the simply supported termination for the M junction so that

~V �0;1(n) = �ZM�
0;1(n) = ZM+

0;1(n) =
~V +
0;1(n):

This shows that velocity waves invert at a velocity junction which is set to zero, while

they do not invert at a force junction.

For a clamped boundary we require v(0; t) = 0 and @v

@x
(0; t) = 0. The �rst of these

conditions is implemented for the velocity junction as above for the simply supported

edge. For the force junction at j = 0, using the FDS we see that we have,

M0(n+
1

2
)�M0(n�

1

2
) = �EI [V1(n)� 2V0(n) + V�1(n)] ;

given that we had access to V�1(n). Setting V1(n) = V�1(n) gives a second order

accurate approximation to @v

@x
(0; t) = 0 and results in

M0(n+
1

2
)�M0(n�

1

2
) = 2�EIV1(n);

since V0(n) = 0. Thus our digital waveguide must match this �nite di�erence at the

boundary. To do this we make our junction M0 a two port junction consisting of a

self-loop of one unit of delay and a sign inversion and a connection to V1 as shown

in the left-hand plot of Figure 5-6. The impedance of each of these ports is set to

Z = 1=Y = 1=
p
�AEI . Then,

M0(n+
1

2
) =

1

Zj

�
~V +
0;0(n+

1

2
) + ~V +

0;1(n+
1

2
)

�

=
1

Zj

�
V �1;1(n)� ~V �0;1(n�

1

2
)

�

=
1

Zj
V1(n)�

1

Zj

�
V +
1;1(n) +

~V �0;1(n�
1

2
)

�

=
1

Zj
V1(n)�

1

Zj

�
~V �0;0(n�

1

2
) + ~V �0;1(n�

1

2
)

�

=
1

Zj
V1(n) +M0(n�

1

2
);

where 1=Zj =
p
�AEI = 2�EI as required.

Finally, for a free end we require m(0; t) = 0 and @m

@x
(0; t) = 0. The �rst of

these conditions can be implemented as with the simply supported edge. The second
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Figure 5-6: Boundary Conditions for clamped and free ends.

condition is analogous to that of the clamped boundary, only we apply the condition

to the velocity junction as shown in the right-hand plot of Figure 5-6. This time V0

becomes a two port junction, with one port attached to M1, and the other employing

a self loop with one unit of delay, but this time with no sign inversion.

5.2.3 Simulation

We carried out the following simulation to test the performance of the proposed model.

We set the sample rate to fs = 44100Hz, which would give a spatial step,

� =

r
1

fs�

in metres. We chose to model a steel bar with the following characteristics,

E = 1:4 � 1012N=m2;

� = 5:38 � 104kg=m3;

with a square cross section of height h = 0:005m. This results in a step size of approx-

imately � = 1=55m and we considered modelling a bar of length 1m. Notice that we

chose a bar with a very small cross-section. This was done so as to keep the required

sample rate down for the purposes of demonstration. Shown in Figure 5-7 are the

transverse velocities along the bar for the �rst 20 steps of our simulation, where the

bar had �xed ends which were allowed to pivot. The model clearly exhibits a frequency

dependent speed of wave propagation, with the higher frequencies reaching the bound-
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Mode n fn Theoretical (Hz) fn Modelled (Hz) Error fn=f1
1 11:56 11:5 0:06 1:000
2 46:26 45:5 0:76 3:957
3 104:09 103:0 1:9 8:957
4 185:05 182:5 2:55 15:870
5 289:14 284:5 4:64 24:740
6 416:37 408:5 7:87 35:522
7 566:72 554:0 12:72 48:217

Table 5.1: Comparing theoretical and modelled resonant modes for the bar model.

ary �rst. Furthermore the shape adopted by the impulse excitation as it spreads is

entirely consistent with the expected shape as described in [33].

The analysis presented above is clearly an intuitive approach. We have already

compared the dispersion characteristics of the model with the theory, and our obser-

vations are reaÆrmed by this pictorial approach. However, in order to perform a more

scienti�c analysis, we must consider the frequency spectrum of the output. This is

shown in Figure 5-8. The sequence of resonant modes is clearly inharmonic. In fact,

we observe that the spacing between the partials increases with increasing frequency

in a manner consistent with the theory, as described in Appendix A.2. It is also pos-

sible to compare the numerical values of these resonant frequencies with the desired

frequencies, which can be calculated using equation (A.10) from Appendix A.2.2. This

comparison is presented in Table 5.1. We note that the fundamental is well tuned,

although we predict that the inclusion of fractional delay loops at the boundary of the

model would help represent the true length of the bar, and hence give a more accu-

rate measure of the fundamental. Subsequent partials become more mis-tuned with

increasing frequency, and this discrepancy is in keeping with the relative phase error

of Figure 5-5 where errors increase with frequency. The amount of inharmonicity can

be measured by calculating the ratio of each resonant frequency with the fundamental,

as indicated in the �nal column of Table 5.1. This shows that the frequencies increase

almost proportionally with n2 as desired.

5.3 A Waveguide Sti� String Model

We now consider an extension to the sti� bar model described previously towards a

model for a sti� string. The sti� string is described in Appendix A.2.3 and its equation

consists of both a `string' part and a `bar' part.

@2u

@t2
=

F

�A

@2u

@x2
� EI

�A

@4u

@x2
: (5.16)
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Figure 5-7: Evolution of transverse velocity waves along Euler-Bernoulli Bar.
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Figure 5-8: Frequency Spectrum observed from bar model output.

Since the PDE is constructed as a combination of the PDEs representing the string

and bar, we consider a similar approach with our waveguide models. To each velocity

junction in the waveguide bar model, we attach two new ports which attach to the

neighbouring velocity junctions via a waveguide comprising one unit of delay. Such a

construction is described in Figure 5-9. Notice the di�erent impedances at each velocity

junction. The `string' part has impedance YF , while the bar part has impedance YE.

We may also think of a sti� string as a thin circular bar, held at a particular tension, and

this intuitive description is mirrored in the waveguide construction. Similarly to the

bar model, the admittance at each force junction is Z = 1
YE

, although in the calculation

of the junction force, this value cancels since each input has the same admittance so

that Z is essentially arbitrary.

5.3.1 A FDS for the Sti� String Equation

Just as was the case in the previous sections, we may show that this waveguide model

is entirely equivalent to a FDS for the underlying PDE. Using centered di�erences, a

FDS for equation (5.16) is

Uj(n+ 1)� 2Uj(n) + Uj(n� 1) = �2
F

�A

�
Uj�1(n)� 2Uj(n) + Uj+1(n)

�
� �2

EI

�A

�
Uj�2(n)� 4Uj�1(n) + 6Uj(n)� 4Uj+1(n) + Uj+2(n)

�
; (5.17)

where � = T

�
and � = T

�2 . Stability and dispersion characteristics of this scheme may

be evaluated by computing the spectral ampli�cation factor in the usual way. The

ampli�cation factor g(w) is found as usual by solving the quadratic g2 + Bg + 1 = 0



CHAPTER 5. 1D MODELS INCLUDING MATERIAL PROPERTIES 79

T 2T 2

T 2T 2

T 2

T 2

T 2

T 2

T 2

T 2

T 2

T 2

T 2

T 2

T 2

T 2

T 2

T 2

T 2

T 2

T 2

T 2

T 2

T 2

�
1

�
1

�
1

�
1

�
1

�
1

�
1

�
1

�
1

�
1

�
1

�
1

V
j
(n
)

V
j
+
1
(n
)

V
j
�
1
(n
)

M
j
(n
)

M
j
+
1
(n
)

M
j
�
1
(n
)

Z

Z

Z

Z

Y
E

Y
E

Y
E

Y
E

Y
F

Y
F

Figure 5-9: Digital Waveguide Network for the Sti� String
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where

B = �2 + 4a2�2 sin2
�w
2

�
+ 16b2�2 sin4

�w
2

�
;

and where a2 = F

�A
and b2 = EI

�A
. As usual stability is achieved when B2 � 4. For this

to hold we thus require to have

a2�2 sin2
�w
2

�
+ 4b2�2 sin4

�w
2

�
� 1:

It is quite easy to show that the limit of stability is thus where a2�2+4b2�2 = 1. Solving

this equation gives the following relationship between the spatial and time steps

1

�2
=

a2

8b2

"r
1 +

16b2

a4T 2
� 1

#
: (5.18)

Similarly to the analysis of the sti� bar model previously, we may discern the accuracy

of the sti� string model by considering the relative phase of the ampli�cation factor

g(w). This is calculated by considering the ratio of the phase of g(w) with that of the

true system. Formally, the relative phase is expressed as

K(w) =
argfg(w)g

T (a2k2 + b2k4)
1

2

=
argfg(w)g

(a2T 2k2 + b2T 2k4)
1

2

=
argfg(w)g

(a2 T
2

�2w2 + b2 T
2

�4w4)
1

2

=
argfg(w)g

(a2�2w2 + b2�2w4)
1

2

(5.19)

where again w = k� and

argfg(w)g = tan�1

 p
4�B2

�B

!
:

We note how putting a = 0 reduces the relative phase of the sti� string model to that

of the sti� bar described in equation (5.15), while putting b = 0 gives the relative phase

of the standard 1D waveguide for the ideal string.

Shown in Figure 5-10 are relative phase (or equally, relative dispersion) plots (in

Hz) for the sti� string model for three values of the sample rate fs. As was the case

with the bar model previously we observe that dispersion error increases with frequency
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Figure 5-10: Relative Phase Plots for the Sti� String Model.

and that in increasing the sample rate the modelled output will converge to the true

solution. We also note improved performance over the bar model discussed previously.

This is not surprising, since at low frequencies in the sti� string model, tension will

dominate, and the 1D waveguide for the ideal string is exact up to the Nyquist rate

(w = �), and hence will have a relative phase of K(w) = 1 for all frequencies. At

higher frequencies, sti�ness dominates, and the system becomes more bar like, and

consequently the phase error in the bar model shown in Figure 5-5 will compromise the

accuracy.

5.3.2 Equivalence of the Sti� String Model to the FDS

It can be shown that the waveguide sti� string model of Figure 5-9 is equivalent to

the FDS of equation (5.17). The proof of the equivalence follows much the same lines

as that for the bar, but is a little unwieldy so we summarise the result here. A full

derivation of the equivalence is given in Appendix D.1. The model results in the

following di�erence scheme for the velocity waves

Vj(n+ 1)� 2Vj(n) + Vj(n� 1) =
2YF
YJ

�
Vj�1(n)� 2Vj(n) + Vj+1(n)

�
� YE

YJ

�
Vj�2(n)� 4Vj�1(n) + 62Vj(n)� 4Vj+1(n) + Vj+2(n)

�
;

where the junction impedance is YJ = 2YF + 4YJ . This scheme is entirely equivalent

to that of equation (5.17) by matching

2YF
YJ

=
F

�A
�2 = a2�2

YE

YJ
=

EI

�A
�2 = b2�2:
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By working at the stability limit where a2�2 + 4b2�2 = 1, and setting YF = 1 we must

set the �nal impedance YE to

YE =
2b2�2

1� 4b2�2
=

1� a2�2

2a2�2
:

When performing a simulation in the next section, we shall see the importance of the

value YE in determining how much closer to a bar or a string the model behaves, and

consequently to the level of inharmonicity in the sound.

5.3.3 Simulation Results

We considered modelling two di�erent strings in order to demonstrate the accuracy of

the model, but also to serve as a demonstration of the inharmonicity observed in sti�

string sounds. In real instruments, inharmonicity is generally undesired. For thicker

strings this inharmonicity becomes greater, and thus such strings in pianos for instance,

are usually constructed by wrapping a string around a central core so as to minimise

the e�ect [15]. From our model we may quite readily isolate the e�ect of sti�ness in

strings without worrying about other frequency dependent or non-linear phenomena.

We consider representing two strings from a guitar. First of all we take a high E-

string. We set the length to 65cm. From [15, 49] such a string has Young's ModulusE =

2� 1010 N=m and should be held at a tension F = 123N=m. Taking the string's cross-

sectional radius to be r = 0:0003385m means that to attain an ideal string fundamental

frequency f1 = 330Hz, the density should be � = 1:8565� 103. With such parameters,

the ratio of the constants a and b is

a

b
= 772:281:

Thus we should expect little inharmonicity, since the tension clearly dominates the

PDE. The results of this simulation are summarised in Table 5.2. They show very little

inharmonicity for the thin high pitched string. Note also the mis-tuned fundamental

in each case.

In our second simulation we double the string radius and hold the string at a tension

of F = 30:38N=m in order to model a low E-string which should vibrate at f1 = 82Hz.

In this instance we expect greater inharmonicity and in fact the ratio of the model

parameters a and b in this case is

a

b
= 95:953:

Results of this simulation are shown in Table 5.3. Again we note the mis-tuned funda-
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Modelled Theoretical

Mode (n) fn fn=f1 fn fn=f1
1 340 1:000 331:337 1:0000
2 679 1:997 662:713 2:0001
3 1018 2:994 994:167 3:0005
4 1358 3:994 1325:737 4:0012
5 1697 4:992 1657:462 5:0023
6 2038 5:994 1989:381 6:0041
7 2377 6:992 2321:533 7:0066
8 2719 7:997 2653:956 8:0098
9 3061 9:003 2986:690 9:0141
10 3403 10:009 3319:771 10:0193

Table 5.2: Comparison of modelled and theoretical mode frequencies for a High E-string

mental, but in this case where the string is thicker and the tension lower, we see how

the inharmonicity is much greater as expected. This has identi�ed the problem faced

by string instrument manufacturers, where sti�ness causes strings to vibrate inharmon-

ically. This is why real strings found in musical instruments are usually constructed by

wrapping one string around another string acting as a central core, and this construc-

tion minimises the e�ect of the sti�ness.

Also shown in Tables 5.2 and 5.3 are theoretical mode frequencies as calculated

using equation (A.12) in Appendix A.2.3. The parameters used are the same as were

used in our models. Notice how the fundamental in each case is slightly higher than the

desired fundamental. This is because the sti�ness will cause an increase in all the mode

frequencies, with a greater increase in the higher end of the spectrum. Also note how the

models do not quite model the true fundamentals accurately. This can be attributed

to an approximation in the length of each string in order to be represented by an

integer number of waveguide junctions. We have seen earlier how this can be overcome

by the use of fractional length waveguides, or by carefully specifying the sample rate.

Comparing the theoretical and modelled outputs we observe a good level of accuracy

in the model. In the case of the thicker low E-string we see how the stretching of the

mode frequencies is less than that of the theory. This will be a consequence of the

phase error observed in Figure 5-10. We also see the phase error evident in the high

E-string simulation. In this case the contraction has caused the sequence of relative

modes fn=f1 in the model to fall below that of a harmonic sequence. This is since

we should be expecting little inharmonicity while the model still incurs a phase error.

Examining the theoretical output, this inharmonicity should only be observed greatly

in the 9th and 10th modes and this is mirrored in the model output.
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Modelled Theoretical

Mode (n) fn fn=f1 fn fn=f1
1 87 1:0000 84:823 1:000
2 174 2:0000 170:270 2:0074
3 261 3:0000 256:965 3:0294
4 351 4:0345 345:334 4:0712
5 443 5:0920 436:598 5:1472
6 539 6:1954 530:784 6:2576
7 637 7:3228 628:715 7:4121
8 740 8:5057 731:015 8:6181
9 847 9:7356 838:309 9:8830
10 959 11:0230 951:221 11:2132

Table 5.3: Comparison of modelled and theoretical mode frequencies for a Low E-string

5.4 Conclusion and Discussion

In this chapter we discussed methods to model the bending waves inherent in the

vibrations in sti� strings and bars. We discounted techniques involving non-linear

phase �lters since we felt they had little physical signi�cance. We introduced and

discussed a waveguide model for a vibrating bar and pointed out that such a model

would be impossible using �lters applied to a standard waveguide due to the need to

represent a zero DC wave speed.

We calculated and analysed the phase error of the model and showed that dispersion

error would increase with increasing frequency. We showed how increasing the sample

rate yielded improved accuracy and demonstrated the convergence of the scheme for

some di�erent sample rates. This convergence is a feature of centred di�erence schemes.

We brie
y discussed the output of such a model where we noted that the errors were

consistent with the dispersion error previously described.

We then extending the technique to include a model for a sti� string and similarly

analysed the dispersion error which we note noted was less than that of the bar model

since the model was closer to the original waveguide for the ideal string. Finally we

discussed a simulation for the sti� string, demonstrating the inharmonicity found in

real strings.



Chapter 6

2D Models Including Material

Parameters

In this chapter we extend the ideas of the last section to 2D in order to model sti� plates

and sti� membranes. The extension to meshes of both a square and triangular geometry

is quite intuitive. A practical approach to modelling sti�ness in membranes could have

been to use the �ltered mesh structure of chapter 2 with �lter coeÆcients which not

only correct the dispersion error, but speed up the higher frequencies. However, due

to the existing dispersion error in the waveguide mesh, it would not be possible to

provide the required variation in the wave speed between low and high frequencies. We

examined this possibility, and surmised that such an approach was not useful [4].

6.1 Modelling Sti� Plates

The extension of the 1D digital waveguide model for a bar to two dimensions is quite

straightforward. In this section we �rst describe a FDS for the 2D sti� plate equation

based on a rectilinear grid and discuss its dispersion characteristics. We show how we

may similarly derive a FDS for a triangular grid and discuss perceived improvements

in propagation characteristics. Then we describe a digital waveguide model for the

sti� plate, based on a simple extension of the 1D waveguide bar model discussed in

the previous chapter. We provide a performance evaluation by comparing the model

output to the expected output from the theory.

The complete theory for a vibrating plate is quite complex and is described in

Appendix A.4. Given a rectangular plate for example, each edge may be terminated

in any of three ways, with a clamped, pinned or free edge. Thus, there are 27 di�erent

combinations of boundary conditions, each leading to its own set of vibrational modes.

85
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The diÆculties experienced in �nding analytical solutions in each of these cases is one

of the reasons why an accurate modelling technique can be extremely useful.

6.1.1 Finite Di�erence Schemes for the Sti� Plate Equation

We begin by describing a FDS for the underlying PDE representing the sti� plate. The

ideal plate is described by the governing equation

@2u

@t2
+

Eh2

12�(1 � �2)
r4u = 0; (6.1)

where h is the plate thickness, � is the density, E is Young's Modulus, � is Poisson's ratio

and u(x; y; t) represents transverse displacement of the plate in terms of spatial position

and time. This is a clear generalisation of the Euler-Bernoulli equation encountered

previously. In standard rectilinear coordinates the 4th order 2D spatial derivative on

the right hand side of equation (6.1) is

r4 =
@4

@x4
+ 2

@4

@x2@y2
+

@4

@y4
:

We note that we may also describe this derivative in triangular coordinates as

r4 =
4

9

�
@4

@l4
+

@4

@m4
+

@4

@x4
+ 2

@4

@l2@m2
+ 2

@4

@l2@x2
+ 2

@4

@m2@x2

�
;

for the new axial directions l, m and x. Also we note that we have restricted our

study to the idealised case based on the 2D extension of the Euler-Bernoulli bar as

opposed to the Mindlin plate theory which is an extension of the Timoshenko beam

theory. We do this since this theory should suÆce for musical sound modelling and

also for simplicity [11]. A waveguide plate model based on the Mindlin theory has

also been presented in [8]. Again this model is theoretical and has yet to be subjected

to rigorous simulation. Thus it seems more reasonable to begin with simulations of

the more simplistic case. Furthermore, theory exists for the extension of this plate

theory to deal with sti� membranes, much like the case for sti� strings, thus we feel it

important to develop it for this study.

In a similar derivation to the 1D case, we consider the decoupled system

@v

@t
= � 1

12�(1� �2)
r2m

@m

@t
= Eh2r2v; (6.2)
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achieved by putting v = @u

@t
and m = Eh2r2u. For standard rectilinear coordinates,

a FDS for equation (6.2) can derived for the discrete variables V and M by applying

centered di�erences directly

Vi;j(n+ 1)� Vi;j(n) = �1

l
�
�
Mi;j+1(n+

1

2
)� 2Mi;j(n+

1

2
) +Mi;j�1(n+

1

2
)
�

� 1

l
�
�
Mi�1;j(n+

1

2
)� 2Mi;j(n+

1

2
) +Mi+1;j(n+

1

2
)
�
;

Mi;j(n+
1

2
)�Mi;j(n+

1

2
) = �c�

�
Vi;j+1(n)� 2Vi;j(n) + Vi;j�1(n)

�
� c�

�
Vi�1;j(n)� 2Vi;j(n) + Vi+1;j(n)

�
; (6.3)

where � = T

�2 ,
1
l
= 1

12�(1��2) and c = Eh2. By expressing the FDS in this form, that

is with two wave variables, it should be clear that any waveguide implementation will

deal with two coupled waveguide meshes. Note, however, that these two coupled FDSs

are entirely equivalent to the following scheme derived by applying centered di�erences

to equation (6.1),

Vi;j(n+ 1)� 2Vi;j(n) + Vi;j(n� 1) =

� Eh2

12�(1 � �2)
�2
�
Vi+2;j(n) + Vi;j+2(n) + Vi�2;j(n) + Vi;j�2(n)

�8Vi+1;j(n)� 8Vi;j+1(n)� 8Vi�1;j(n)� 8Vi;j�1(n) + 2Vi+1;j+1(n)

+ 2Vi�1;j+1(n) + 2Vi�1;j�1(n) + 2Vi+1;j�1(n) + 20Vi;j(n)
�
: (6.4)

We may analyse the relative phase of this FDS in the usual way by taking Fourier

Transforms of each side of equation (6.4). The spectral ampli�cation factor, g(w),

where w is the 2D spatial frequency vector w = (wx; wy)
t, may be calculated by

solving the quadratic

g(w)2 + (B � 2)g(w) + 1 = 0;

where for a rectilinear mesh

B =
Eh2

12�(1 � �2)
�2
�
2 cos(2wx) + 2 cos(2wy)� 16 cos(wx)� 16 cos(wy)

+4 cos(wx + wy) + 4 cos(wx �wy) + 20
�
: (6.5)

The resultant ampli�cation factor is always complex with unit magnitude. This means

the scheme is stable and lossless. Then the relative phase is calculated similarly to
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equation (5.15) in Section 5.2.1 as

K(w) =
argfg(w)g
b�jwj2 ; (6.6)

where b2 = Eh
2

12�(1��2) .

Shown in Figure 6-1 are relative phase plots for plate models using both a square

mesh and a triangular mesh. For a triangular mesh, the spectral ampli�cation factor

is calculated using

B =
Eh2

12�(1 � �2)
�2

4

9

�
42� 20 cos(wx) + 4 cos(

p
3wy)

�20 cos 1
2
(wx +

p
3wy)� 20 cos

1

2
(wx �

p
3wy)

+4 cos
1

2
(3wx +

p
3wy) + 4 cos

1

2
(3wx �

p
3wy)

+2 cos(2wx) + 2 cos(wx +
p
3wy) + 2 cos(wx �

p
3wy)

�
; (6.7)

in place of equation (6.5). The top left and right hand plots show grey scale relative

phase plots of K(w) for square and triangular mesh geometries respectively. A degree

of direction dependence is clearly visible for the square mesh model in analogy to

the direction dependence found in the dispersion of standard 2D waveguide meshes in

section 2.4. The bottom left hand plot shows two cross sections of the relative phase

plot for a square mesh plate model. The upper of the two curves shows the diagonal

cross section which shows reasonable accuracy in keeping with that found in the 1D bar

model of the previous chapter. The lower curve, however, indicates the horizontal cross

section and quite poor dispersion is observed. This can be attributed to a combination

of the error found in the 1D bar model and the phase error encountered in the standard

2D waveguide mesh. The bottom right hand plot of Figure 6-1 shows equivalent cross

sections of the relative phase for the triangular mesh. This indicates a higher degree of

error than the diagonal cross section of the square mesh, but also describes a direction

independent nature. As was the case in 1D, increasing the sample rate will improve the

quality of the simulation. In this case however, where the dispersion error is greater,

we would need to raise the sample rate higher than in the 1D case to obtain the same

levels of accuracy and convergence to the true solution would be slower.

6.1.2 The 2D Waveguide Plate Model

The 2D waveguide plate model is achieved by coupling two interleaved square meshes

together. Two interleaved square waveguide meshes are placed one spatial position out
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Figure 6-1: Relative Phase Plots for Square and Triangular Mesh Sti� Plate Models

of synchronisation with each other in each spatial direction as shown in Figure 6-2.

Thus velocity junctions of one mesh align spatially with force junctions of the other

mesh. The coupling (indicated with the large arrow in Figure 6-2) is performed using

four waveguides, each implementing half a unit of delay and carrying a sign inversion,

as shown in Figure 6-3. Also shown in Figure 6-3 are the wave variables, where we

denote velocity waves impinging upon a force junction with ~V so as to di�erentiate

them with velocities impinging upon the velocity junction at the same spatial position.

To derive the equivalence of this waveguide structure to the FDS described in

equation (6.3) we may proceed in a similar manner to that of the 1D case. We begin

with the standard expression for junction velocity then use equations (5.5), (5.6), (5.7)
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Figure 6-2: Square Mesh Waveguide Plate Model.
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and (5.8),
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where YJ =
P7

k=0 Yk is the total junction impedance at a velocity junction and Yk is

the input impedance at the kth port. By inspection we see that this di�erence scheme

is entirely equivalent to the FDS of equation (6.3) by setting

2

YJ
=

�

12�(1 � �2)
: (6.9)
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Figure 6-3: Coupling in waveguide plate model.

Similarly we may also begin with a force junction to yield the di�erence scheme

Mi;j(n+
1

2
)�Mi;j(n�

1

2
)

=
2

ZJ
[Vi+1;j(n) + Vi;j+1(n) + Vi�1;j(n) + Vi;j�1(n)� 4Vi;j(n)] ; (6.10)

where ZJ =
P7

k=0 Zk is the total junction admittance. This scheme is equivalent to

the FDS of (6.3) by setting

2

ZJ
= Eh2�: (6.11)

The two conditions (6.10) and (6.11) are satis�ed for spatially constant material pa-

rameters by setting Yk = Y =
p
12Eh2�(1� �2), giving in turn

� =
1

4

r
12�(1 � �2)

Eh2
: (6.12)

Notice the similarity between the impedance value Y here with the corresponding value

for the waveguide bar model described in section 5.2.

6.1.3 Simulation Example

We carried out a simulation for a square steel plate of length a = 0:5m, with thickness

h = 0:005m, E = 1:4� 1012N=m2, � = 53800kg=m3 and � = 0:3. The resulting spatial
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Mode Theoretical Modelled Error fmn=f11 (Model) fmn=f11 (Theory)

f11 96:9932 97 0:0068 1:0000 1:0

f12 242:4831 241 1:4831 2:4845 2:5

f22 387:9729 383 4:9729 3:9485 4:0

f13 484:9662 479 5:9662 4:9381 5:0

f23 630:4560 623 7:456 6:4227 6:5

f14 824:4425 809 15:4425 8:3402 8:5

f33 872:9391 861 11:9391 8:8763 9:0

Table 6.1: Comparing theoretical and modelled resonant modes (in Hz) for the plate

model.

step size was � = 0:01323m, giving a mesh of size 38� 38 nodes.

The results of the simulation using a square mesh are summarised in Table 6.1

where the expected mode frequencies for a square plate with simply supported edges

were calculated using the following equation from Appendix A.4.2.

fmn =
�

2a

s
Eh2

12�(1� �2)

�
n2 +m2

�
: (6.13)

The simply supported boundary condition is implemented in the waveguide plate model

by simply terminating the meshes with inverting self-loops, as was the case with the

termination of the sti� bar. From the table we note a good tuning of the fundamental

and by comparing the last two columns we observe that the level of inharmonicity over

the �rst 5 modes is consistent with the theory. We see that the 6th mode is poorly

represented, and that all the errors are of the form of a contraction, that is, the natural

frequencies are underestimated. By noting that the 7th mode, the f33 mode, is better

resolved than the previous one, f14, we see how the direction dependence of the phase

error a�ects any simulation. Figure 6-1 showed how the diagonal cross-section of the

relative phase plot was better than the horizontal, and this is mirrored in the model

output where diagonal modes are resolved more accurately than horizontal ones. We

also note that the errors are generally larger than those found in the equivalent 1D bar

model (Table 5.1). Firstly, this plate model has a larger fundamental frequency, so all

subsequent modes are larger and should su�er more from phase error. Secondly, we

might expect that the extension of the bar model to 2D should introduce additional

dispersion error, similar to that found in the standard 2D waveguide mesh in chapter 2.
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6.2 Sti� Membranes

A sti� membrane model may be quite easily realised by applying the sti� string model

to two dimensions. Again we may consider meshes of either a square or triangular

geometry. For a square mesh the waveguide sti� membrane model may be realised by

adding extra waveguide connections of one unit of delay between velocity junctions to

the plate model described in Figure 6-2. We begin by discussing the equivalent FDS.

6.2.1 FDS for the Sti� Membrane

The sti� membrane equation is described in Appendix A.4.3 as

@2u

@t2
=

F

�
r2u� Eh2

12�(1 � �2)
r4u;

where we have simply introduced tension F to the ordinary sti� plate equation. A

centered FDS on a rectilinear grid is

Vi;j(n+ 1)� 2Vi;j(n) + Vi;j(n� 1) = a2�2
�
Vi+1;j(n)� 2Vi;j(n) + Vi�1;j(n)

+ Vi;j+1(n)� 2Vi;j(n) + Vi;j�1(n)
�

� b2�2
�
Vi+2;j(n) + Vi;j+2(n) + Vi�2;j(n) + Vi;j�2(n)

� 8Vi+1;j(n)� 8Vi;j+1(n)� 8Vi�1;j(n)� 8Vi;j�1(n)

+ 2Vi+1;j+1(n) + 2Vi�1;j+1(n) + 2Vi�1;j�1(n)

+ 2Vi+1;j�1(n) + 20Vi;j(n)
�
; (6.14)

where a2 = F

�
, b2 = Eh

2

12�(1��2) and as usual � = T

�
, � = T

�2 . Stability of this scheme is

determined by considering the spectral ampli�cation factor g(w) found by solving the

quadratic g2 +Bg + 1 = 0 where

B = �2 + 4a2�2
�
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2
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2
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2
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2
sin2(

wx � wy

2
)
�
:

Stability of the scheme is achieved for B < 2, since where the ampli�cation factor is

complex with unit magnitude. Thus at the stability limit,

a2�2 + 8b2�2 =
1

2
: (6.15)
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Note that when either a or b is zero, that is in the instances of zero tension or zero

sti�ness, the stability bound reduces to that found in the standard membrane or sti�

plate schemes respectively. For example in the absence of any tension we have a = 0

and equation (6.15) becomes � = 1
4
1
b
which is the same as the bound for the sti� plate

model in equation (6.12) in section 6.1.2. If, on the other hand, we remove the sti�ness

so that b = 0 we regain the relationship � =
p
2cT which is the standard stability

bound for a 2D mesh applied to the 2D wave equation in section 2.3

Solving equation (6.15) for �2=T 2 gives the following expression for the spatial step

� in terms of the PDE constants and the time step T .

�2

T 2
=

1

�2
=

a2

16b2

"r
1 +

16b2

a4T 2
� 1

#
: (6.16)

Note the similarity between this expression and equation (5.18) for the sti� string

model.

Using this value for the spatial step we may calculate the relative phase of the FDS

for both square and triangular meshes as

K(w) =
argfg(w)g

(a2�2jwj2 + b2�2jwj4) 12
; (6.17)

where we note the similarity between this expression and that for the relative phase of

the 1D sti� string model in equation (5.19).

Figure 6-4 shows grey scale and cross sectional plots of the relative phase errors for

the sti� membrane model with both square and triangular meshes. Note the similarity

to Figure 6-1, and in particular the direction dependence of the square mesh, shown in

the two left hand plots. A closer inspection of the two cross sectional plots, which show

best and worse cases of the relative phase for the square mesh, left, and the triangular

mesh, right, show that better accuracy is attained at low frequencies, than was observed

for the plate model. This is an analogy to the case of the sti� string, where for low

frequencies where tension dominates the equation, the 1D waveguide model is highly

accurate. It should be noted that in both this model, and that of the plate, the phase

error observed in the equivalent 1D case is added to by the phase error found in the

2D membrane simulations examined in chapter 2.

6.2.2 Equivalent Waveguide Model

Deriving an equivalent waveguide structure to a FDS for the sti� membrane equation

is a straightforward extension to the process described for the sti� string model in
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Figure 6-4: Relative Phase Plots for Square and Triangular Mesh Sti� Membrane Mod-

els

section 5.3. Again the calculation is very involved so we do not reproduce it here but

give the derivation in Appendix D.2. The model consists of two coupled waveguide

meshes, one comprised of velocity junctions, the other of force junctions. The force

junctions have the same structure as in the waveguide plate model described earlier in

this chapter. The velocity junctions are 12-ports, where 8 are attached with impedance

YE and connect via half length waveguides to force junctions, and where the other four

ports attach via unit length waveguides of impedance YF to the neighbouring velocity

junctions. The equivalence with the FDS of equation (6.14) is achieved by setting

YE

2YJ
=

Eh2

12�(1 � �2)
�2;

2YF
YJ

=
F

�
�2;

where YJ is the total junction impedance given by YJ = 8YE + 4YF . These equations

may be easily solved by setting YF = 1 giving

YE =
8b2�2

1� 16b2�2
=

1� 2a2�2

4a2�2
:

6.3 Conclusion and Discussion

In this chapter we extended the 1D results of chapter 5 to 2D to include models for sti�

plates and sti� membranes. We discussed dispersion characteristics for each system for
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meshes of both square and triangular geometries and proved the equivalence of our

waveguide structures with direct centred FDSs for the underlying PDEs.

We observed from the relative phase plots that dispersion error was dependent on

both direction and frequency, with frequencies on the diagonal being better represented

than horizontal and vertical angular frequencies. This was analogous to the case of using

the standard square waveguide mesh when modelling an ideal membrane, as described

in chapter 2. Consequently we observed that using a triangular mesh would reduce the

level of directional dependence in the dispersion error, although the error was greater

than that of the diagonal frequencies of the square mesh.

We discussed the accuracy of the plate model in section 6.1.3 where errors were

consistent with those predicted by the dispersion error, that is errors were larger in

the horizontal and vertical modes than in the diagonal modes. We also observed larger

errors in the horizontal and vertical modes than those found in the 1D bar model of the

previous chapter. This is again analogous to the case of the ideal membrane models

described in chapter 2 where using a square mesh we had no dispersion error in the

diagonal direction, but large dispersion error in the horizontal and vertical directions.

The 2D bar model incurs a dispersion error which is a combination of the error found

in the standard 2D waveguide mesh, and the dispersion error of the 1D bar model.

With the sti� membrane model described in section 6.2 a similar experiment to that

performed in section 5.3.3 for a sti� string could be conducted. Inclusion of this model

within the drum model framework of chapter 4 would also be an interesting exercise in

order to investigate the e�ect of membrane sti�ness on drum sounds.



Chapter 7

Representing Internal Damping

Often what characterises the sound of a vibrating object is the internal damping. In

this chapter we discuss how it is possible to introduce simple viscoelastic behaviour

to a waveguide model representing foundation sti�ness or viscosity. This waveguide

model is equivalent to a system formed by placing a string on a viscoelastic foundation

of a spring and dashpot in parallel as described in Appendix A.3. In the future it

is envisaged that this waveguide model could be extended to cover more complicated

viscoelastic foundations which represent the frequency dependent damping found in

real materials. However, this is left as a future study and in this section we discuss

only the simplest case.

7.1 The string on an elastic sub-base

In this section we describe how it is possible to model a string placed on a purely

elastic foundation. We discuss the theory in A.3 wherein we �nd that the principal

consequence of the addition of an elastic sub-base is to introduce additional dispersion

causing an increase in the fundamental frequency together with a change in the pattern

of resonant modes. We observe that at low frequency each resonant mode is close to the

next one, and that as we move up the frequency axis, the modes approach a harmonic

sequence. In the waveguide model which follows we prove an equivalence with a FDS

for the modi�ed wave equation and discuss the accuracy by calculating fundamental

frequencies and the arrangement of the resonant modes for various values of the spring

sti�ness coeÆcient. It is also important to note that the model may also be used to

introduce locally varying dispersion which is important when looking towards modelling

resonators whose material properties vary spatially.

We begin in the usual way by �rst describing a FDS for the underlying equation

98
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described in Appendix A.3.1 by

�
@2u

@t2
= F

@2u

@x2
�Gy;

which corresponds to a string of density �, held at tension F and placed on an elastic

foundation of sti�ness G. By using centered di�erences we may quite simply write a

FDS for this as

Uj(n+ 1)� 2Uj(n) + Uj(n� 1) = �2
F

�

�
Uj�1(n)� 2Uj(n) + Uj+1(n)

�
� T 2G

�
Uj(n); (7.1)

for time step T , spatial step � and with � = T

� .

Now, we construct our waveguide model by using a standard waveguide, but where

each junction has an additional self loop consisting of one unit of delay together with

a sign inversion. Now setting the impedance of the self loop to Rs and all other

impedances to unity, the junction velocity equation may be manipulated as follows,

Vj(n+ 1) =
2

R

h
V +
j;1(n+ 1) + V +

j;2(n+ 1) +RsV
+
j;3(n+ 1)

i
=

2

R

h
V �
j�1;2(n) + V �

j+1;1(n)�RsV
�
j;3(n)

i
=

2

R
[Vj�1(n) + Vj+1(n)�RsVj(n)]

� 2

R

h
V +
j�1;2(n) + V +

j+1;1(n)�RsV
+
j;3(n)

i
=

2

R
[Vj�1(n) + Vj+1(n)�RsVj(n)]

� 2

R

h
V �
j;1(n� 1) + V �

j;2(n� 1) +RsV
�
j;3(n� 1)

i
=

2

R
[Vj�1(n) + Vj+1(n)�RsVj(n)]� Vj(n� 1);

where R = 2 +Rs is the total junction impedance. This may be re-written as

Vj(n+ 1)� 2Vj(n) + Vj(n� 1) =
2

R
[Vj�1(n)� 2Vj(n) + Vj+1(n)]�

4Rs

R
Vj(n):

Now this is clearly equivalent to the FDS of equation (7.1) by setting

2

R
=

F

�
�2;

4Rs

R
=

GT 2

�
;
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Sti�ness G Model Frequency (Hz) Theoretical Frequency (Hz)

0 96 96:1769
1 96 96:1776
10 96 96:1835
102 96 96:2427
103 97 96:8331
104 103 102:5501
105 148 148:0377
106 369 368:6482

Table 7.1: Comparing modelled and theoretical fundamental frequencies for a string on

an elastic foundation.

which for a �xed time step T requires

Rs =
2GT 2

4��GT 2
;

with spatial step

� =

s
4T 2F

4��GT 2
:

Notice that it is quite clear that when the sti�ness G = 0 we reduce to the case for a

waveguide string where Rs = 0 and � = Tc for string wave speed c =
p
F=�.

We carried out a simulation for a string of length L = 0:5m with density 0:2kg=m2

held at tension 1850N=m. The frequencies of vibration may be calculated from

fn =
c

2�

��n�
L

�2
+
G

F

� 1

2

: (7.2)

Shown in Table 7.1 are the modelled and theoretical fundamental frequencies for var-

ious values of the sti�ness parameter G. Furthermore we also examine the dispersion

properties by considering the positions of the resonant modes. Shown in the left hand

plot Figure 7-1 is a plot of frequency against wavenumber for our model. The curves

represent models for G = 0 to G = 105, where the lowest of the curves represents

G = 0, while the highest curve represents G = 105. The fundamental frequency is that

where the wave number is one and it clearly increases with increasing sti�ness. We

compare this graph to that of Figure A-4. At �rst the graphs have zero gradient, but

then each curve tends towards a straight line representing a harmonic sequence. We

note that for low values of sti�ness G, the limiting line is that of the the same string

in the absence of foundation sti�ness. In fact, the curves for G = 0 to G = 103 are not
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Figure 7-1: Frequency versus wavenumber for waveguide on a bed of springs.

individually visible on the plot. In the case where the sti�ness is low, the output is

dominated by the tension. However for higher spring sti�nesses, the shape of the curve

will approach that of a string of a higher fundamental, rather than the fundamental

of the string in the absence of foundation sti�ness. The right hand plot of Figure 7-1

shows the frequency spectra of a standard waveguide and a waveguide placed on an

elastic foundation. The curve with the lower fundamental is that of an ideal string.

Note how the second curve has a higher fundamental frequency, but as frequency in-

creases, the resonant modes of both systems align. This is in accordance with equation

(7.2).

7.2 The string on a viscous sub-base

It is well documented that real strings exhibit losses which are roughly of a low-pass

nature. What usually happens is that friction causes damping in the free vibrations,

mainly at the higher end of the spectrum, and there is a slight change in the allowed

frequencies. To characterise the losses correctly is not straightforward. Most of the

energy is lost as heat to the surrounding air, while some goes into outgoing sound

waves [33]. Losses can be added to a waveguide string model by including loss loop

�lters at the terminations of the waveguide. Using an IIR �lter one can attempt to

match the frequency dependent loss of a given material [27]. However, by considering

methods to represent the linear viscoelastic response, we hope to provide a framework

to construct more complicated damping models representing particular materials. We

follow the work of Djoharian in [13, 14] and begin by reconsidering the ideas within

a waveguide environment. The model we consider is one which represents a string on

a purely viscous foundation as described in Appendix A.3. Although this does not

introduce a frequency dependent loss it does show how we may represent simpli�ed
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internal friction. We hope to extend this idea to include more complicated linear

viscoelastic responses in the future.

We note the equation of motion for a string on a viscous foundation as described

in Appendix A.3.2 is

F
@2u

@x2
� g

@y

@t
= �

@2y

@t2
:

The proposed waveguide structure is similar to that of the previous section but we

input a zero signal to the third port of each junction instead of attaching a self-loop. By

doing this we are placing a hole at each junction, the size of which can be characterised

by an input impedance Rd. Formally, for each junction j, the inputs are

V +
j;0(n) = V �

j+1;1(n� 1)

V +
j;1(n) = V �

j�1;0(n� 1)

V +
j;2(n) = 0:

Now, setting the other impedances to R, giving a total junction impedance RJ =

2R +Rd we manipulate the junction velocity equation as follows,

Vj(n+ 1) =
2

RJ

h
RV +

j;0(n+ 1) +RV +
j;1(n+ 1)

i
=

2

RJ

h
RV �

j+1;1(n) +RV �
j�1;0(n)

i
=

2

RJ

[RVj+1(n) +RVj�1(n)]

� 2

RJ

h
RV +

j+1;1(n) +RV +
j�1;0(n)

i
=

2

RJ

[RVj+1(n) +RVj�1(n)]

� 2

RJ

h
RV �

j;0(n� 1) +RV �
j;1(n� 1) +RdV

�
j;2(n� 1)

i
+

2Rd

RJ

V �
j;2(n� 1)

=
2R

RJ

[Vj+1(n) + Vj�1(n)]� Vj(n� 1) +
2Rd

RJ

V �
j;2(n� 1):

By noting that V �
j;2(n� 2) = Vj(n� 2)� V +

j;2(n� 2) = Vj(n� 2) we may now write the
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waveguide as the following di�erence scheme,

Vj(n+ 1)� 2Vj(n) + Vj(n� 1) =
2R

RJ

[Vj+1(n)� 2Vj(n) + Vj�1(n)]

+

�
4R

RJ

� 2

�
Vj(n) +

2Rd

RJ

Vj(n� 1):

Now

4R

RJ

� 2 =
4R

RJ

� 2(2R +Rd)

RJ

= �2Rd

RJ

;

giving

Vj(n+ 1)� 2Vj(n) + Vj(n� 1) =
2R

RJ

[Vj+1(n)� 2Vj(n) + Vj�1(n)]

� 2Rd

RJ

(Vj(n)� Vj(n� 1)) :

This is entirely equivalent to a centered FDS for the governing equation by setting

2R

RJ

=
F

�
�2;

2Rd

RJ

=
g

�
T;

where � = T

� for time step T and spatial step �. To solve these equations we �x the

time step, and set R = 1 giving,

Rd =
2gT

2�� gT
; � =

s
F

�
T

r
2�

2�� gT
:

Note how in the absence of foundation viscosity when g = 0, then we have Rd = 0 and

the spatial step is as in the case of a standard waveguide string where � =
q

F

�
T .

We may analyse this scheme by considering the spectral ampli�cation factor G(w),

found by solving the quadratic

G2 +BG+ C = 0;

where B = b2T + 4a2�2 sin2(w
2
) � 2, C = 1 � b2T , a2 = F

�
and b2 = g=�. We �nd

that B2� 4C < 0 which means the ampli�cation factor is always complex and thus we

compute it's magnitude and phase. We �nd that the magnitude is represented by

jG(w)j =
p
C =

p
1� b2T :

We note that the magnitude is independent of frequency and that jGj < 1 whenever
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Figure 7-2: Output from Viscous Waveguide with g = 5.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.998

0.999

1

g=10 

g=5 

g=1 

S
p
ee
d

Frequency

Figure 7-3: Wave Speed on Viscous Waveguide.

g > 0. Thus the damping acts evenly on all frequencies and increases with increasing g.

Shown in Figure 7-2 is a plot of the output of a viscous waveguide when g = 5 shown

in the time domain since we observed previously that damping will act evenly on all

frequencies. We observe an exponential nature to the decay of the signal.

We may also examine the phase of the ampli�cation factor and �nd that a small

amount of additional dispersion is evident. Shown in Figure 7-3 are phase speed plots

for viscous waveguides for three values of the viscosity parameter g. They show a small

amount of dispersion where the wave speed will fall very slightly below the original

waveguide wave speed of 1 spatial sample per time step. This deviation causes very

little di�erence to the output signal as shown in Table 7.2 which shows that harmonicity

is preserved.

It is also possible to combine the viscous waveguide model with the model of the

previous section to model a string placed on a viscoelastic foundation, whose governing
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n fn fn=f1
1 96 1:00
2 193 2:01
3 289 3:01
4 385 4:01
5 483 5:03
6 578 6:02
7 674 7:02
8 769 8:01
9 867 9:03
10 964 9:03

Table 7.2: Modelled modes for Viscous Waveguide with g = 5.
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Figure 7-4: Waveguide model for Viscoelastic String.

equation is

F
@2u

@x2
� g

@u

@t
�Gu = �

@2u

@t2
:

This is equivalent to placing the string upon a foundation based upon parallel connec-

tions of springs and dampers called Voigt Units. The equivalent waveguide structure

is described in Figure 7-4. Compare this to the diagram of the physical system in

Figure A-5. In this instance the self loops and `holes' are attached with respective

impedances

Rs =
2GT 2

4�� 2gT �GT 2
; Rd =

4gT

4�� 2gT �GT 2
;

and the spatial step is calculated from

� = T

s
4F

4�� 2gT �GT 2
:

This waveguide model and its corresponding physical system are analogous to the

model for the transmission line equations described in [7, 8] in the constant coeÆcient
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case.

Sounds from the model with damping only sound quite synthetic, since the damping

is not frequency dependent, but the decay sounds seem reasonable. Sounds from the

model with only an elastic foundation seem to add some modulation to the frequencies.

In the future we hope to extend this simple model to include frequency dependent

damping and we discuss some potential approaches in the next chapter.



Chapter 8

Conclusions and Future Research

In this chapter we provide a summary of the thesis, together with some possible avenues

for future work. The thesis has provided some quite detailed descriptions and analyses

of waveguide models of vibrating systems commonly found in musical instruments. We

have described a simple waveguide model for a drum using waveguide structures for

ideal wave propagation in air and across membranes. We pointed out that these ideal

models were limited since they did not include phenomena such as sti�ness or internal

damping. Thus we went on to describe extended waveguide models for dispersive media

such as sti� bars, strings, plates and membranes, as well as discussing a framework

around which we could include internal damping. We now go on to describe further

extensions which could improve the existing models. We then summarise the main

results of the work and go on to discuss the limitations of the waveguide technique

within the context of numerical modelling.

8.1 Suggestions for Future Research

8.1.1 Extensions to the Drum Model

There are many straightforward and immediate extensions that could be made to the

drum model. In all cases the model is such that the basic structure would not change.

First of all we note that in real tom-tom, side, or bass drums the two skins are typically

held at di�erent tensions and are of di�erent thicknesses [15]. The variation in tension is

simply implemented within the model framework and merely results in a di�erent node

density for the membrane mesh. Di�erences in thickness could be introduced, either by

altering the density, or by replacing the ideal membrane meshes with sti� membrane

meshes, described in section 6.2. The inclusion of a sti� membrane would also allow

an investigation in to the e�ect of sti�ness on the drum sounds. We also noted during

107
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the course of chapter 4 that we would require fractional length delay lines to correctly

model the size of the interior air, both at the circular boundary and at the interface.

The interface method itself could be extended by considering its implementation near

the circular boundary, which would certainly improve the accuracy.

It should also have become clear that we have not included a model for the shell

of the drum. Such a shell would be typically made of wood or metal, and could be

represented using the sti� plate model of chapter 6. The interface method already

described could be used to model the passage of energy from the air to the shell and

back. Using such a model we would be able to learn how important the shell is to the

overall sound of the drum.

By using either a dodecahedral mesh or an interpolated mesh, we could improve

the air mesh quite considerably. The interface process has been shown to be quite

adaptable by its use in the modelling of a kettledrum in [27] where a dodecahedral

mesh has been used to model sound propagation through the air within the kettle.

It is also clearly possible to model quite accurately air loading on a membrane by

�lling the surrounding air with an air mesh which may interact with the vibrating

membrane through the interfacing technique.

Finally we note that since many musical instruments are made by hand using ma-

terials such as wood, that internal re
ections will not always be specular, that is to

say, di�usion will occur due to the rough nature of the surfaces. Such a phenomenon

has been modelled successfully in [26] in 2D and could be extended to 3D for inclusion

in the drum model.

8.1.2 Including other phenomena

Tension Modulation

In section 2.6 we discussed correcting dispersion error in a 2D waveguide mesh by re-

placing the units of delay with allpass �lters. This structure could also be used to model

the phenomenon of Tension Modulation. This is extremely important when observing

the di�erence between a soft and vigorous pluck or strike of a string or membrane.

When a string or membrane is displaced from its equilibrium it will necessarily have a

larger than nominal length or area, and hence, due to sti�ness of the material, there will

be additional and time-varying tension. In strings this typically causes a time-varying

fundamental frequency, where at �rst the fundamental increases, and then approaches

the nominal frequency with time. It also causes generation of energy in the missing

modes [29]. This is a phenomenon which has been accurately modelled in 1D for strings

using time-varying FIR fractional delay �lters in [49]. In this study the extra tension
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Figure 8-1: The Voigt Unit.

was commuted to the ends of the delay line and implemented using an FIR fractional

delay �lter. It is also possible to model this e�ect by using time-varying allpass �lters

placed between nodes in a digital waveguide [5]. Since the structure exists to place

allpass �lters between nodes in a waveguide mesh, an extension to model tension mod-

ulation in 2D should be possible. It is also important to note that it would not be

possible to commute the extra tension to the edges of a 2D mesh, and the time-varying

fractional delay �ltering would have to be performed between nodes.

Frequency Dependent Damping

In chapter 7 we touched upon the need to represent a material's internal damping in

order to fully represent the true sound of a material, and that this phenomenon was

typically frequency dependent. It had been discussed and shown that a material's

frequency dependent damping can be represented approximately in the linear case by

series/parallel combinations of springs and dashpots [28, 38, 50]. The spring/dashpot

models have a viscoelastic response which can be matched to the response of a real ma-

terial. The model we presented in chapter 7 represented a string placed on a viscoelastic

foundation whose response was of the simplest type called a Voigt Unit, described in

Figure 8-1 as a parallel connection of a spring and dashpot. Another such foundation

which could be considered would be based upon the Maxwell Unit, shown in Figure 8-

2, to be a series connection of a spring and dashpot. Placing a string upon this type

of foundation could mean that the damping would act in a manner dependent on the

sti�ness of the spring, and would hence introduce a frequency dependency. More com-

plicated viscoelastic networks have been used in this way to model frequency dependent

damping in [13, 14] and it could be possible to include such an approach within the

waveguide framework using the procedure started in chapter 7.
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Figure 8-2: The Maxwell Unit.

Wooden Boards

Most musical instruments are made of wood, which presents an extra modelling prob-

lem. Disregarding the internal damping, the grain of the wood gives a directional

property to the elastic constants which help describe the propagation of waves across a

wooden surface. In theory, quarter cut wood boards are characterised by two Young's

Moduli, two Poisson ratios and a shear modulus representing the di�erent characteris-

tics in line or against the grain of the wood [15]. A shear modulus can be introduced

to a waveguide mesh plate model by considering the Mindlin plate theory, as opposed

to the Euler-Bernoulli theory as described in [8]. Then the directional properties cause

by the grain of the wood are quite easily covered in the waveguide domain by changing

the impedance values. Bilbao [8] has shown how spatially varying material parameters

can be incorporated into a waveguide model. For example, given a wooden plate with

two Young's Moduli Ex and Ey, we could de�ne two corresponding impedance values

Yx and Yy in the plate model of chapter 6. Each horizontal input to a mesh scattering

junction in the square would have input impedance Yx, while each vertical input would

have impedance Yy.

Such a wooden board model could be used to model guitar or violin bodies, or the

wooden shells found in drums.

8.2 Conclusions and Discussion

8.2.1 Thesis Summary

This thesis has presented a detailed description and analysis of the digital waveg-

uide modelling technique when applied to physical systems representing vibrations of

musical instruments. For each system considered, the model has been subjected to

mathematical analysis, and then simulations have been presented where results have

been explained and compared to expected theoretical output. In each case the physical

theory has been separately described in the Appendix.

After an initial introduction to the concept and reasons for mathematical and nu-
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merical modelling, and the waveguide modelling technique, we described in chapter 2

how to use the method in 2D to model a circular membrane, and considered improving

the representation of the boundary where we concluded that the inclusion of rimguides

was valid. At this stage we identi�ed the problem of dispersion error, and introduced

a novel method for correcting this inaccuracy using a �ltered mesh. This work was

carried out independently from similar work described in [17].

In chapter 3 we considered extensions of the waveguide mesh technique to 3D. Again

we analysed the model mathematically and compared theoretically two mesh structures

by examining their dispersion errors. We then used the two meshes in simulations of

two acoustic spaces and discussed the accuracy of the models. We concluded that

rimguides should in general improve the boundary resolution for arbitrarily shaped

enclosures. We also concluded that in general a dodecahedral mesh structure should

be used for accurate 3D acoustics simulations, but in some cases, due to the shape of

the boundary of the space, it may be suÆcient to use a 3D rectilinear mesh.

Having introduced and analysed models for sound wave propagation in 1D, 2D and

3D we described a model for a drum in chapter 4. It was proposed that the model

should be constructed by representing drum skins by 2D waveguide meshes, and the

internal air enclosed by the drum by a 3D waveguide mesh. Thus a method which

interfaces 2D and 3D meshes was described. In this work, the method was applied to

a new model for a tom-tom drum, and an analysis of the interfacing technique was

presented. This showed that the model behaved encouragingly in accordance with

theoretical and physical observations of real drums, and in particular, that the e�ect

of the internal air load was represented.

By this point it was well established that waveguides and waveguide meshes could

be applied to musical instrument modelling, but that simpli�cations in the underlying

vibrating systems meant that considerations of such phenomena as sti�ness and internal

damping had been ignored. Following the work begun by Stefan Bilbao [8] we showed

in chapter 5 how it was possible to extend the waveguide technique to models of sti�

bars. We presented an analysis of the model and its output. We found that the models

su�ered from a dispersion error where accuracy decreased with increasing frequency.

This was con�rmed in the simulation. We then went on to describe an extension to

the model for a sti� string, again analysing the model mathematically, and from the

output of a simulation. We showed that the model behaved as expected for some

experimental simulation values for steel guitar strings. We were able to demonstrate

the inharmonicity encountered for thick, low frequency strings. This inharmonicity is

countered in real guitars by forming the thicker, lower frequency strings, by wrapping

one string around a central core. We then showed in chapter 6 that these models could



CHAPTER 8. CONCLUSIONS AND FUTURE RESEARCH 112

be extended to 2D to represent sti� plates and sti� membranes. These models were

described and analysed for di�erent mesh geometries by comparing their dispersions.

We found that errors in these models were larger than those found in the for the

corresponding 1D methods. This was because the phase errors of both the sti� 1D

models and the standard 2D waveguide mesh models of chapter 2 were combined.

Thus to obtain the same level of accuracy in the 2D case we would need a higher

sampling resolution.

Finally, in chapter 7 we began an approach to the problem of including a material's

internal damping. We described that this could be quite complex and discussed a new

approach to including this phenomenon in waveguide models by considering a simple

example. The work has so far concentrated on the simplest cases and we hope that

the underlying principle could be extended to provide accurate frequency dependent

damping models of real materials.

This thesis provides much practical advice on the use of digital waveguides for mu-

sical instrument models. For example we set out criteria for using a 2D waveguide

mesh and a �ltered mesh for membrane simulations, describing the boundary problem

and the method of rimguides to correctly model a circular boundary. We discussed

3D waveguide meshes for use in simulations of cubic, rectangular and cylindrical en-

closures and described and evaluated the boundary problem. We went on to describe

a model for a drum and discussed extended mesh structures which would then need

to be incorporated to yield more physically realistic models and models for complete

musical instruments. The thesis could be thought of as a description of the building

blocks required to build complete instrument models, which can be glued together using

the interfacing technique described in chapter 4. Thus a complete virtual instrument

builder could be developed which could help in the analysis of existing instruments, or

indeed the design of entirely new ones.

8.2.2 Contributions of the Author

In chapter 2 a method was described by which the dispersion error in a 2D waveguide

mesh could be corrected using embedded allpass �lters. This method was devised by the

author entirely independently of similar work carried out in [17]. The analysis presented

in this thesis contains more detail. It was shown how to calculate the dispersion of the

�ltered mesh, and we pointed out that the presence of the �lters introduced some

direction dependence in the dispersion error. Simulations were carried out and it was

noted that the directional dependence of the dispersion error was causing some of

the higher frequencies to be poorly resolved, contributing double peaks in frequency

spectrum. This issue was not discussed in the alternative work, where the output
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signals were also low-pass �ltered. An alternative performance analysis was described

in this thesis which helped conclude that the �ltered mesh would successfully decrease

the e�ect of dispersion over a useful bandwidth, without increased computational cost

over a standard waveguide mesh operating at an increased sample rate. However the

issue of spatial resolution (the �ltered mesh will have fewer nodes than the un�ltered

mesh at the same sample rate) against temporal resolution is left to the discretion of

the reader.

In chapter 3 we discussed the use of 3D waveguide meshes for the simulation of

acoustic spaces. A performance analysis of the method was given which has not been

previously presented in the literature. In particular we discuss the use of rimguides to

correctly model the boundary in cubic, rectangular, and cylindrical enclosures using

both square and dodecahedral meshes. Previous work had detailed only the perfor-

mance of square and tetrahedral meshes for use with rectangular enclosures [41, 56].

The dodecahedral mesh has been previously de�ned in [18] and used in the model of

a tympani drum [27] but we include a detailed performance analysis. Furthermore we

have been able to identify the boundary problem, and give recommendations for use of

waveguide meshes in the simulation of acoustic spaces.

In chapter 4 we introduced a method by which we may interface 2D and 3D waveg-

uide meshes and applied the technique by building a model for a tom-tom drum. The

development of this model was carried out by the author in conjunction with Joel

Laird [27]. The use of the method in the model of a tom-tom drum was a novel im-

plementation in this thesis. Also, the performance analysis presented in this thesis has

not been discussed elsewhere.

In chapter 5 and 6 we discussed extensions to the waveguide method to include

modelling dispersive media such as bars, sti� strings, plates and sti� membranes. First

of all, a 1D waveguide model for the Euler-Bernoulli bar was given. This was taken

from [8] but in this thesis we analysed the dispersion error and provided a numerical

analysis of the output of such a model. This has not been previously reported where

performance analysis had been presented pictorially [8]. The consequent extension of

the 1D bar model to a model for a sti� string was derived entirely by the author.

In chapter 6 we extended the Euler-Bernoulli bar model to 2D in order to model a

sti� plate. This was a novel extension and we also included a numerical performance

analysis and dispersion error comparisons not previously reported for 2D plate models.

The subsequent extension of this plate model to a model for a sti� membrane was also

a new model devised in this thesis.

Finally, in chapter 7 we proposed a novel method for introducing damping into a

waveguide model. We showed how the method can be used to introduce additional dis-
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persion and non-frequency dependent damping in a model for a string on a viscoelastic

foundation. We conjectured how more complicated visco-elastic responses could be

introduced within a novel framework for incorporating material speci�c damping.

8.2.3 Conclusions

Having been introduced to the waveguide modelling method the question arises as to

how this method compares to existing methods such as �nite di�erences (FDS) and �-

nite elements (FEM). In this thesis we extended the waveguide modelling technique and

the next step would be to perform a detailed comparison analysis with the other meth-

ods. There are no directly comparable published studies but some points of discussion

do come readily to hand.

The waveguide method in its basic form, such as the standard waveguide meshes

or the waveguide models for dispersive media presented in this thesis, is entirely an

alternative implementation of a centred FDS in terms of wave variables, and to that

end a direct comparison is quite straightforward. A simple calculation of the compu-

tational requirements show that the waveguide formulation is certainly heavier. For

example, if we consider the 2D triangular waveguide mesh of chapter 2 we �nd that

calculation of velocity at a waveguide scattering junction will require some 12 addi-

tions and 1 multiplication. The corresponding calculation in the FDS domain requires

merely 7 additions and 1 multiplication. Furthermore, the waveguide method will re-

quire 7 memory locations per node, while the FDS requires only 1. Such a calculation

immediately casts doubt on the waveguide method as a modelling technique.

Originally the digital waveguide method was developed for use in 1D real time syn-

thesis and its uses have been well documented, and this thesis in part sought to push

the technique onwards towards 2D and 3D models and models which represent more

complicated physical behaviour, for example, frequency dependent wave speed. In par-

ticular we wanted to apply the 2D and 3D mesh modelling techniques and examine their

accuracy and suitability for acoustic simulation, especially when applied to complete

musical instrument models. We sought to extend the complexity of the models in order

to improve accuracy, in the case of the 2D membrane, and in order to model systems

other than those representing ideal wave propagation. In the original 1D waveguide

formulation, casting the FDS as a waveguide, that is, as a pair of bi-directional delay

lines, meant that signal processing techniques such as digital �ltering could be applied

to simulate certain e�ects like dispersion or damping. We have seen in this thesis

that some of these ideas can be used for accurate modelling in 2D waveguide meshes

when we described an allpass �ltered mesh with improved dispersion characteristics. In

this case we have used the waveguide formulation of the FDS in order to apply signal
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processing techniques and improve accuracy without increasing computational burden.

It is possible to argue in favour of the waveguide formulation over its FDS alterna-

tive. The �rst case in point refers to the level of intuition and understanding. When

applying the waveguide method to simple wave propagation in 1D, 2D and 3D the use

of scattering methods gives a uniquely physical approach. Implementation as waves

travelling down certain routes and scattering at junctions according to a simple rule

is certainly more intuitive to the lay-man than a numerical version of a mathematical

equation. However this level of intuition degrades when we consider the dispersive

models of chapters 5 and 6 where the method performs less accurately.

One may also argue that, when designing a model for a given system, ensuring

numerical stability in a waveguide formulation will require only that each junction be

passive. In this instance we merely require each waveguide impinging upon a scattering

junction to have positive impedance.

In this thesis we also described how we may de�ne an interface between a 2D and

3D waveguide mesh. By doing this we were able to model a drum where coupling

occurs between the membrane and the surrounding air. In order to provide a similar

interface using just FDSs we would have to de�ne a constitutive set of equations for

both membrane and the air within and without the drum with additional constraints

at the interface. These constraints would ensure that the velocity of the membrane

was the same as the velocity of air at the boundary of each air �lled enclosure. Such

a set of equations has been de�ned in [30]. Then �nite di�erences would have to be

applied to this set of equations. Thus the waveguide formulation has o�ered a simpler

and more intuitive approach just by connecting models which represent the individual

components of the drum.

It has been reported that it is also possible to interface waveguide meshes of di�erent

densities in the same dimension [8, 27]. This allows for a more careful application of the

mesh near areas of interest, such as corners. Furthermore the use of rimguides, again

an application of digital �lters, allow more careful boundary shape resolution without

requiring an adaptive or denser mesh structure near the boundary. This is possible

using FDSs but it is not straightforward for 2D stationary grid methods. Here, the

reformulation of the FDS as a waveguide mesh, has again allowed us to use a signal

processing technique in order to improve the quality of the simulation, without resorting

to a new FDS.

However, the issue of damping in waveguide models of musical instruments has not

yet been adequately addressed. We have seen how simple losses can be introduced to

the waveguide and discussed how more complicated linear viscoelastic behaviour could

be included, but these issues would need to be resolved. In FDS models of sti� strings
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and bars [11, 10], damping has been introduced by adding viscous terms to the PDEs

in the form of mixed derivatives, and a centred FDS applied to this equation. It is

unclear whether there exist equivalent waveguide formulations of these FDSs. This

opens the question: if a waveguide model corresponds to a centred FDS, does a FDS

have an equivalent waveguide formulation? The likely negative answer to this question

introduces a limitation of the waveguide method, where the class of all FDSs is a

much larger set that that of all the waveguide models. On the other hand, the �ltered

waveguide mesh discussed in chapter 2 will not be equivalent to a centred FDS and its

advantages have been discussed.

We have seen that the digital waveguide method is an alternative implementation of

centred FDS and as such certain advantages have been described. However we have also

seen that these schemes su�er badly from phase error. Another modelling technique

which is commonly used and which su�ers less from phase errors is the Finite Element

Method (FEM). A model for a drum had also been presented using a FEM [30]. The

model was for a tympani drum and was achieved by de�ning a set of coupled equations

as was described previously, and then applying �nite elements. The model produces

excellent results when compared to a real tympani drum. This model was compared to

a waveguide model in [27]. The results show that the FEM is certainly more accurate,

and does not su�er from dispersion error. Each model was analysed by comparing

output from the tympani membrane. The FEM method o�ers excellent accuracy over

the 12 modes, while the waveguide method shows a considerable mis-tuning of the �rst

two modes, and while the next 10 modes are more accurately represented, it is clear that

dispersion error is occurring. It should be noted however, that the waveguide model

represents only the interaction of the membrane with the interior air of the drum,

and that the air load from outwith the drum had not been modelled. This would

cause a decrease in the fundamental modes of vibration [15], and thus the mistuned

fundamental observed in the waveguide model could be corrected. Also, designing a

FEM model is a much more involved process. The process of deriving the coupled

equations and the element method would require good mathematical knowledge. On

the other hand, the waveguide technique provides a modular representation of the drum,

connecting simple structures (the membrane model of chapter 2 and the cylindrical air

cavity of chapter 3) together, thus each element can be manipulated separately, for

example, replacing the membrane with a sti� membrane model.

Also in the FEM paper they show output when applied just to the membrane.

We have shown similar accuracy with our �ltered mesh, although a comparison of

computational requirements and speed has not been made and would require further

study. An FEM has also been used to model a vibrating bar in [9], however in this case
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the elements were three-dimensional, and the method was based on a 3D model of the

material, and thus a comparison with our FDS model is not possible.

It has been remarked [45] that the bene�t of �nite element methods over FDS meth-

ods is that one can create a denser mesh structure where required, say at boundaries,

and that they are more suitable when modelling coupled models, where various wave

propagation media are connected. We have shown in this thesis that more accurate

modelling of the boundary can be achieved with regular grids, and without increasing

mesh density. Furthermore, by describing a simple drum model, we have shown that

interfaces between di�erent meshes is also possible. However the performance of the

interface is compromised by the low order of interpolation. Furthermore, the interface

method will need to be extended to cope with areas such as that near the circular

boundary in the drum model.

In this thesis we have shown that it is possible to extend the standard digital

waveguide methods to model wave propagation in dispersive media such as bars, sti�

strings, plates and membranes. We have also shown that the method is accurate enough

to demonstrate phenomena observed in real instruments. However, it is the view of

the author that the method is still a little too simplistic to be used as an accurate

modelling tool. For example, the results in chapters 5 and 6 show that errors can

be quite large despite qualitative similarities between the behaviour of the model and

the theoretical system. The underlying FDS is quite basic and su�ers greatly from

dispersion error. Errors for the 2D plate model show that dispersion error inherent in

2D waveguide mesh models for the standard wave equation are inherited in the 2D plate

model. This is demonstrated by poor performance. Since the 2D plate model involves

two coupled interleaved waveguide meshes, it is unclear whether this dispersion error

could be corrected by the use of digital �lters. Again, the use of an implicit FDS or

FEM could give improved performance, although an explicit FDS employed at a lower

resolution can produce quite good results [11], and thus we could similarly employ a

waveguide implementation.

We have extended the waveguide modelling technique to perform more than had

been done before. We sought to use the method as a modelling tool rather than as

a synthesis method. We designed and described extensions to the method to cope

with more complicated systems and concluded that the technique o�ers an alternative

perspective of the FDS method and showed that by using waveguides we could approach

modelling in a di�erent manner. However, the underlying FDSs are quite simple.

Waveguides have been extended in this thesis beyond their original use for modelling

ideal wave propagation to models for dispersive media. It is also been shown how they

can be used to design complete instrument models. They o�er an alternative and
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valid perspective on centred FDSs. They utilise signal processing techniques implied

by their digital travelling wave implementation, such as was shown in the method

of rimguides, the allpass �ltered mesh and the interface technique. However various

limitations have been encountered which have indicated that the method could not

be used for highly accurate musical instrument models. For example, the order of

interpolation in the interface method is zero order, with a resultant loss of accuracy,

the underlying centred FDSs su�er greatly from phase error, and thus high sample rates

are required (particularly in 2D and 3D), and the inclusion of damping has not yet been

satisfactorily addressed. In the absence of a de�nitive comparison, it seems that, while

methods such as FEM would yield the most accurate models, the waveguide method

could be used to design simple prototype models which highlight certain phenomena,

while remaining more amenable to direct manipulation.



Appendix A

The Physics Of Musical

Instruments

In this appendix we include mathematical details of the physical systems described

throughout the thesis. All of the dynamical systems described here are also detailed in

such texts as [15, 20, 21, 33, 38].

A.1 The Ideal Wave Equation in 1D, 2D and 3D

A.1.1 Derivation and solution of the 1D Wave Equation

Consider a small element of a string which is held under tension F as shown in Figure A-

1. In the following derivation we assume the only restoring forces are due to tension,

that there is no external force and no friction. The resultant equation of motion in the

vertical direction is thus

F sin(�x+dx)� F sin �x = �ds
@2u

@t2
;

where � represents the density per unit length. By assuming small de
ections, we may

write ds � dx. The same assumption allows us to write � � sin � for small � and

� � @u

@x
. Hence the equation of motion may be approximated as

F (�x+dx � �x) = �dx
@2u

@t2

) F
@�

@x
= �

@2u

@t2

) F
@2u

@x2
= �

@2u

@t2
:

119
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Figure A-1: Segment of a string held under tension F

Writing c2 = F

�
gives us the standard form for the 1D wave equation representing

transverse displacement on an ideal string.

@2u

@t2
= c2

@2u

@x2
:

A.1.2 Solving the 2D Wave Equation for a Circular Membrane

The 2D wave equation describes transverse wave propagation on an ideal membrane

and may be written as

@2u

@t2
= c2

�
@2u

@x2
+
@2u

@y2

�
;

where u(t; x; y) represents vertical displacement, c =
q

F

�
, F is tension per unit length

of the membrane and � its super�cial density.

For a circular membrane, we consider solving the above equation in polar co-

ordinates. By writing x = r cos� and y = r sin� we have

d2u

dt2
= c2

�
d2u

dr2
+

1

r

du

dr
+

1

r2
d2u

d�2

�
:

Writing the solution in the form u(r; �; t) = R(r)�(�)eiwt gives the simultaneous equa-
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Figure A-2: First 12 modes of the ideal circular membrane.

tions,

d2R

dr2
+

1

r

dR

dr
+

�
w2

c2
� m2

r2

�
R = 0

d2�

d�2
+m2� = 0:

The solution of second equation is �(�) = Ae�im�. The �rst equation is a form of

Bessel's Equation

d2y

dx2
+

1

x

dy

dx
+

�
1� m2

x2

�
y = 0;

with y = R and x = kr. The solutions are Bessel Functions of order m. Each of these

functions J0(x); J1(x); :::; Jm(x) has several zeros and it is these zeros which characterise

the allowed frequencies. Writing the nth zero of Jm(x) as jmn then we have kmn = jmn=r

and using the relationship k = w=c we may write the allowed frequencies as

fmn = jmn

c

2�r

for m;n 2 N. The frequency of the (m;n) mode is characterised by m nodal diameters

and n nodal circles (including one at the boundary) and these are shown in Figure A-2.

Mode frequencies can be calculated using tables of Bessel Functions like those given

in [57].

Membrane Impedance

The concept of wave impedance for a string was discussed in chapter 1. For a membrane

it is not possible to de�ne an analogous quantity since a �nite force applied to an

interior point of the membrane will produce an in�nite de
ection [33]. To show this we

consider the static de
ection of a circular membrane subjected to a transverse force P ,
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distributed evenly over a circular area of radius s at the centre of the membrane. The

equation for the static de
ection u is

d2u

dr2
+

1

r

du

dr
+

1

r2
d2u

d�2
=

(
� P

�s2F
0 � r < s

0 s < r � R

Solving this gives for the de
ection u gives

u =

(
P

2�F

�
ln R

s
+ 1

2s2
(s2 � r2)

�
0 � r < s

P

2�F ln R

r
s < r � R

Thus the displacement of the region of application of the force goes to in�nity as s! 0,

as we approach a point driving force, and this will happen no matter how small the

driving force P is compared to the tension F , since the de
ection can be made as large

as we wish by concentrating it on a smaller area.

A.1.3 The Wave Equation in 3D

Three dimensional wave propagation may be characterised by the following equation

of motion

@2P

@t2
= c2r2P; (A.1)

where c is the speed of sound through the medium in question, while the pressure P

depends upon position and time.

Finding Resonant Modes of a Rectangular Room

In Cartesian coordinates equation A.1 is written as

@2P

@t2
= c2

�
@2P

@x2
+
@2P

@y2
+
@2P

@z2

�
: (A.2)

If the boundary surface is perfectly rigid, then the boundary conditions are that @P

@x
= 0

at x = 0 and x = Lx,
@P

@y
= 0 at y = 0 and y = Ly and

@P

@z
= 0 at z = 0 and z = Lz.

We separate variables by considering a solution of the form P (x; y; z; t) = X(x)Y (y)Z(z)T (t)

in a rectangular room of length Lx, width Ly and height Lz. Inserting this solution

into equation A.2 yields

1

T

@2T

@t2
= c2

�
1

X

@2X

@x2
+

1

Y

@2Y

@y2
+

1

Z

@2Z

@z2

�
:
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Now for this equation to hold both sides must be equal to a constant which we set to

�w2 to give

@2T

@t2
+ w2T = 0

1

X

@2X

@x2
+
w2

c2
= � 1

Y

@2Y

@y2
� 1

Z

@2Z

@z2
:

The �rst of these has the solution T (t) = At sin(wt) + Bt cos(wt), while, as before, in

the second equation both sides must be equal to a constant, k21. This gives two more

equations to deal with. Firstly we have

@2X

@x2
+

�
w2

c2
� k21

�
X = 0;

resulting in a solution, X(x) = Ax sin
q

w2

c2
� k21x + Bx cos

q
w2

c2
� k21x. Secondly we

have

1

Y

@2Y

@y2
+ k21 = � 1

Z

@2Z

@z2
:

Once more, this must be a constant, which we set as �k22 to yield

@2Y

@y2
+ (k21 � k22)Y = 0

@2Z

@z2
+ k22Z = 0:

The �rst of these equations has the solution Y (y) = Ay sin
p
k21 � k22y+By cos

p
k21 � k22y

and the second has solution Z(z) = Az sin(k2z) +Bz cos(k2z).

We may determine the allowed frequencies by introducing the boundary conditions.

Firstly dX

dx
(0) = 0 gives Ax = 0, then

dX

dx
(Lx) = �Bx sin

r
w2

c2
� k21Lx = 0;

gives us
q

w2

c2
� k21 =

l�

Lx
, where l 2 Z, so that X(x) = Bx cos

l�x

Lx
.

Next, dY

dy
(0) = 0 gives Ay = 0 and

dY

dy
(Ly) = �By sin

q
k21 � k22Ly = 0:

This means that
p
k21 � k22 =

m�

Ly
, with m 2 Z and Y (y) = By cos

m�y

Ly
.
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Finally the condition dZ

dz
(0) = 0 gives Az = 0 and dZ

dz
(Lz) = 0 gives

dZ

dz
(Lz) = �Bz sin(k2Lz) = 0

and hence k2 =
n�

Lz
, for l 2 Z and Z(z) = Bz cos

n�z

Lz
.

The gives a general solution which is a superposition of solutions of the form

Plmn(x; y; z; t) = cos
l�x

Lx
cos

m�y

Ly
cos

n�z

Lz
(A sin(wt) +B cos(wt)):

The allowed frequencies may be calculated by examining the expressions derived above

for k1 and k2 giving

wlmn = c�

�
l2

L2
x

+
m2

L2
y

+
n2

L2
z

� 1

2

flmn =
wlmn

2�
: (A.3)

Finding Resonant Modes of a Cylindrical Air Cavity

For a cylindrical column of air closed at both ends we consider re-writing equation A.1

in cylindrical coordinates. Putting x = r cos�, y = r sin� and leaving z results in the

following form for the 3D wave equation.

1

r

@

@r

�
r
@P

@r

�
+

1

r2
@2P

@�2
+
@2P

@z2
=

1

c2
@2P

@t2
: (A.4)

As usual we consider separation of variables by writing the solution as P (r; �; z; t) =

R(r)�(�)Z(z)e�iwt. Substitution in A.4 gives

1

r

�
@R

@r
+ r

@2R

@r2

�
�Z +

1

r2
RZ

@2�

@�2
+R�

@2Z

@z2
+
w2

c2
R�Z = 0:

r2

R

�
1

r

@R

@r
+
@2R

@r2

�
+

1

�

@2�

@�2
+
r2

Z

@2Z

@z2
+
w2

c2
r2 = 0

1

�

@2�

@�2
+
r2

Z

@2Z

@z2
= �r

2

R

�
1

r

@R

@r
+
@2R

@r2

�
� w2

c2
r2:

Now proceeding in a similar manner as before, we may assume that both sides of this

equation are equal to a constant, �k21, giving

1

�

@2�

@�2
+
r2

Z

@2Z

@z2
= �k21;
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which can in turn be written as

1

�

@2�

@�2
= �r

2

Z

@2Z

@z2
� k21 = �k22 ; (A.5)

where k22 is a constant. Now, since � has to have the same value at � = 0 and � = 2�,

we must have k2 as an integer, m, say, so that

@2�

@�2
+m2� = 0: (A.6)

Equation A.5 also gives us the following di�erential equation for Z

@2Z

@z2
+

(k21 �m2)

r2
Z = 0

) @2Z

@z2
+ k2zZ = 0 (A.7)

Returning to the separated equation we also have

1

r

@R

@r
+
@2R

@r2
+

�
w2

c2
� k21
r2

�
R = 0

) 1

r

@R

@r
+
@2R

@r2
+

�
k2w �

m2

r2

�
R = 0; (A.8)

where k2w = k2 � k2z , with k = w

c
.

Now, equation A.6 has solutions �(�) = cos(m�) or �(�) = sin(m�), while equa-

tion A.7 has solutions of the form Z(z) = Az sinkzz + Bz cos kzz. Equation A.8 is

a form of Bessel's Equation, whose solutions are Bessel functions of order m, namely

J0(kwr); : : : ; Jm(kwr).

We are now able to calculate the allowed frequencies for the complete solution.

Given a cylinder height h, the boundary condition dZ

dz
(0) = dZ

dz
(h) = 0 implies that

kz = l�

h
with l 2 Z and Z(z) = Bz cos kzz. Now proceeding in a similar manner to

that of the circular membrane we must solve dR

dr
(a) = 0, where a is the radius of the

cylinder. Thus, the allowed values of kw are �mn

a
, where �mn is the nth zero of the

derivative of the mth Bessel function, J 0m. Consequently the allowed values of k are

kmnl =

s��mn

a

�2
+

�
l�

h

�2
;
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dx d�

z

M + dM

M

F + dF
F

Figure A-3: Forces acting on an ideal bar

since k2 = k2w + k2z . Consequently the allowed frequencies are

wmnl = c

s��mn

a

�2
+

�
l�

h

�2

) fmnl =
c

2�

s��mn

a

�2
+

�
l�

h

�2

:

Finally the general solution can be formed as a superposition of functions of the form

Pm;n;l(r; �; z; t) = A
cos(m�)

sin(m�)
Jm

��mn

a
r
�
cos

�
l�

n
z

�
cos(wt):

A.2 Bending Sti�ness in Bars and Sti� Strings

A.2.1 Deriving the Euler-Bernoulli beam equation

An ideal bar di�ers from a string in the sense that it may vibrate freely under zero

tension, with the restoring forces being supplied by elastic forces within the bar. To

derive the equation of motion for the bar, consider a small segment of the bar of length

dx. When the bar is bent, the outer part is stretched and the inner part is compressed,

with a neutral axis whose length remains unchanged somewhere in between as shown

in Figure A-3.

A �lament located at a distance z below the neutral axis is compressed by an amount

z d�
dx

and the total amount of force required to produce the strain (using Hooke's Law)

is

Ez
d�

dx
dS;

where dS is the cross-sectional area of the �lament and E is Young's Modulus. Hence
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the total moment of this force about the central line is

dM =

�
Ez

d�

dx
dS

�
z;

giving the total moment to compress all the �laments as

M =

Z
dM = E

d�

dx

Z
z2dS:

Now we may approximate d� as the di�erence in the slope of the neutral axis at each

end of the element so that

d� = �
�
@u

@x

�
x+dx

+

�
@u

@x

�
x

= �dx
�
@2u

@x2

�
;

where u(x; t) is the transverse displacement of the bar. Then writingmoment of inertia

as I =
P

z2dS we have a relationship between the total moment and the curvature

M = �EI @
2u

@x2
:

The bending moment is not the same at every part of the bar, since it is proportional

to curvature, so to keep the bar in equilibrium, the di�erence in the moments at each

end of an element must be balanced by a shearing force whose moment is Fdx as shown

in the right hand side of Figure A-3. Thus we have

Fdx = (M + dM)�M = dM

) F =
@M

@x
= �EI @

3u

@x3
:

The net force acting on the element dF , perpendicular to the bar's axis, can be written

in terms of the forces acting at either ends of the element as

dF = Fx+dx � Fx

= dx
Fx+dx � Fx

dx

= dx
@F

@x
: (A.9)
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So �nally, the equation of motion, using Newtons second law, is

dx
@F

@x
= �A

@2u

@t2

) @2M

@x2
= �A

@2u

@t2

) @2u

@t2
= �EI

�A

@4u

@x4
:

A.2.2 Bars with Fixed, Free, and Simply Supported Ends

We showed that the governing equation for a bar was

@2u

@t2
= �EI

�A

@4u

@x4
:

We consider the existence of travelling wave solutions by trying harmonic solutions

of the form u = Aei(kx�wt), where w is the frequency of the harmonic wave which

travels at speed c = w=k. Substitution in the governing equation gives the following

relationship between k and w,

w =

s
EI

�A
k2;

k =

�
�A

EI

�1

4 p
w:

Then, by either writing y = Aei
w
c
(x�ct), or using c = w=k e may write down a relation-

ship between speed c and frequency w as

c(w) =
w

k
=

�
EI

�A

�1

4 p
w:

Thus we see that in a bar, the presence of bending sti�ness introduces a frequency

dependent speed of wave propagation which is proportional to
p
w.

To determine whether or not the bar may vibrate with simple harmonic motion

(SHM), we consider solutions of the form u = U(x)e�iwt. Doing this means we do

away with the time derivative in the sti� wave equation which becomes

@4U

@x4
=

�A

EI
w2U

= k4U;
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where k4 = �A

EI
w2.

The general solution of this equation is

U(x) = c1e
kx + c2e

�kx + c3e
ikx + c4e

�ikx

= a cosh(kx) + b sinh(kx) + c cos(kx) + d sin(kx);

where cosh(!) = cos(i!) and sinh(!) = �i sin(i!). Thus the complete general solution

for the sti� bar is

u(x; t) = cos(wt+�) (a cosh(kx) + b sinh(kx) + c cos(kx) + d sin(kx)) :

The range of allowed frequencies will now be determined by the boundary conditions.

Supported at x = 0 and x = L

For a simply supported (or pinned) boundary we have displacement and curvature set

to zero at the boundaries, that is

u(0; t) =
@2u

@x2
(0; t) = u(L; t) =

@2u

@x2
(L; t) = 0:

The boundary condition at x = 0 imposes that a = c = 0 and hence

U = b sinh(kx) + d sin(kx)

@2U

@x2
= k2 [b sinh(kx)� d sin(kx)] :

Then the boundary conditions at x = L now impose that

sinh(kL) = sin(kL) = 0

=) kL = n�

=) kn =
n�

L
;

which is the same requirement for kn as for the ideal string. This time however, the

allowed frequencies are

fn =
wn

2�
=

�

2L2

s
EI

�A
n2: (A.10)
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Clamped at x = 0 and x = L

For clamped edges we require both displacement and slope to be zero at the boundary,

that is

u(0; t) =
@u

@x
(0; t) = u(L; t) =

@u

@x
(L; t) = 0:

The condition at x = 0 gives c = �a and d = �b so that now

U = a [cosh(kx)� cos(kx)] + b [sinh(kx)� sin(kx)]

@U

@x
= ak [sinh(kx) + sin(kx)] + bk [cosh(kx)� cos(kx)] :

Now for the boundary at x = L, U(L) = 0 gives

b = �a
�
cos(kL)� cosh(kL)

sin(kL)� sinh(kL)

�
;

while @U

@x
(L) = 0 gives

b = a

�
sin(kL) + sinh(kL)

cos(kL)� cosh(kL)

�
:

Setting these two equal gives

cos(kL) cosh(kL) = 1;

which occurs for values knL = �n� (i.e. Kn = �n�=L). the allowed frequencies are

fn =
wn

2�
=

1

2�

s
EI

�A
k2n

=
�

2L

s
EI

�A
�2n;

where �1 = 1:5056, �2 = 2:4997 and �n � n+ 1
2
for n > 2.

Free at x = 0 and x = L

When the bar is free at both ends the constraints are as follows.

@2u

@x2
(0; t) =

@3u

@x3
(0; t) =

@2u

@x2
(L; t) =

@3u

@x3
(L; t) = 0:
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The condition at x = 0 gives c = a and d = b so that now

@2U

@x2
= ak2 [cosh(kx)� cos(kx)] + b2 [sinh(kx)� sin(kx)]

@3U

@x3
= ak3 [sinh(kx) + sin(kx)] + bk3 [cosh(kx)� cos(kx)] :

This clearly gives the same allowed frequencies as the clamped case, although the mode

shapes will be very di�erent.

A.2.3 Sti� Strings

Now sti�ness is not only important for travelling waves in vibrating bars but also

bending sti�ness can be found in strings. We modify the wave equation for an ideal

string by including a bar like term to give

�A
@2u

@t2
= F

@2u

@x2
�EI

@4y

@x4

where the only new parameter is the tension F . This representation of a sti� string

has been used in [10]. Substitution of a plane wave of the form u = Aei(kx�wt) gives

the following quadratic in k2,

k4 +
F

EI
k2 � �A

EI
w2 = 0;

which gives

k2 = � F

2EI
�

s�
F

2EI

�2

+
�A

EI
w2:

Again, we may also derive a relationship for the frequency dependent wave speed c(w)

c(w)2 =
F

2�A
�

s�
F

2�A

�2

+
EI

�A
w2: (A.11)

Note that for low frequency, the equations for k and c may be shown to approximate

that of the string, but for high frequency they approximate the equations for a bar

under no tension.
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Boundary Conditions

Consider a sti� string of length L clamped at its boundaries. Thus the required bound-

ary conditions are

u(0; t) =
@u

@x
(0; t) = u(L; t) =

@u

@x
(L; t) = 0:

We consider the time-reduced equation by setting u = U(x)e�iwt giving

@4U

@x4
= �2

@2U

@x2
� 
4U = 0;

where �2 = F

EI
and 
2 = w

q
�A

EI
. To solve the time-reduced equation we set U(x) =

Aekx so that

k4 � k2�2 � 
4 = 0:

this quadratic has two solutions,

k21 =

r
�4

4
+ 
4 +

�2

2

k22 =

r
�4

4
+ 
4 � �2

2
;

each of which has two further solutions, giving a total of 4, k = �k1, k = �ik2.
Note also that k21 � k22 = �2 and that k1k2 = 
2. Thus the general solution to the

reduced-time equation is

U(x) = aek1x + be�k1x + ceik2x + de�ik2x

= A cosh(k1x) +B sinh(k1x) + C cos(k2x) +D sin(k2x):

Now, putting the origin at the centre of the string, evaluating U(L=2) = U(�L=2) = 0

and canceling terms involving sin and sinh gives

A cosh(
k1L

2
) = �C cos(

k2L

2
);

while @U

@x
(L2 ) =

@U

@x
(�L

2 ) = 0 gives

k1A sinh(
k1L

2
) = k2C sin(

k2L

2
);
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when terms involving cos and cosh are cancelled. Dividing the second of these equation

by the �rst, and recalling that k21 = �2 + k22 yields

tan(
k2L

2
) = �

s
1 +

�2

k22
tanh(

L

2

q
�2 + k22):

The solutions to this equation will result in a sequence w1; w3; w5; : : : of allowed fre-

quencies. Meanwhile we may generate an alternate sequence w2; w4; w6; : : : of allowed

frequencies by changing the cancelling above to give

B sinh(
k1L

2
) = �D sin(

k2L

2
)

k1B cosh(
k1L

2
) = �k2D cos(

k2L

2
);

and hence,

s
1 +

�2

k22
tan(

k2L

2
) = tanh(

L

2

q
�2 + k22):

Then the allowed frequencies, which depend upon the allowed values of k2 can be

calculated using

w =

s
EI

�A

2

=

s
EI

�A
k1k2

= k2

s
EI

�A

�
�2 + k22

�
:

Special Cases

Suppose � = 0, i.e. there is no tension, then the two equations for k2 above become

tan(
k2L

2
) = � tanh(

k2L

2
);
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and the allowed frequencies are w = k22

q
EI

�A
. This results in the following sequence of

resonant modes in Hz which is the same as a sti� bar in the absence of tension,

f1 =
3:5608

L2

s
EI

�A

f2 = 2:7565f1

f2 = 5:4039f1

f2 = 8:9330f1:

Similarly when � ! 1, that is , the sti�ness goes to zero and tension dominates,

then w = k2

q
F

�A
and the two equations above for k2 reduce to

tan(
k2L

2
)!1;

which occurs when k2 =
n�

L
, and hence

fn =
n

2L

s
F

�A

and the system has reduces that of an ideal string.

Finally we give an approximate formula for the resonant modes in a sti� string as

fn =
n

2L

s
F

�A

"
1 +

2

L

r
EI

F
+

�
4 +

n2�2

2

�
EI

LF 2

#
; (A.12)

which is valid only when n2 < L2F

�2EI
.

A.3 The String on a Viscoelastic Foundation

A.3.1 The String on an Elastic Foundation

Beginning with an ideal string, characterised by the wave equation

F
@2u

@x2
= �

@2u

@t2
;

where F is string tension and � is mass density per unit length, we include a purely

elastic foundation as an external load q(x; t) = �Gu(x; t) to give a new governing
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equation,

F
@2u

@x2
�Gu = �

@2u

@t2

) @2u

@x2
� G

F
u =

1

c2
@2u

@t2
;

where c =
q

F

�
. We have essentially added foundation sti�ness in the form of a spring

attached to each point on the string. The modi�ed wave equation will not have a

travelling wave solution of the form f(x � ct), where undistorted pulse propagation

occurs. It is logical, however, to expect some distortion in the pulse propagation [20].

Consider a harmonic solution of the form u = Aei(kx�wt). Substitution in the

governing equation gives

�
�k2 � G

T
+
w2

c2

�
Aei(kx�wt) = 0:

Solving this gives the following expressions for frequency w in term of the wavenumber

k,

w2 = c2
�
k2 +

G

F

�
: (A.13)

Using the relationship c = w=k, we may also derive an expression for the frequency

dependent wave speed (or phase velocity),

c(w) =
cwp

w2 � (G=T )c2
: (A.14)

We may now make certain inferences about the behaviour of this system. We may

predict the frequency content by examining equation A.13. Shown in Figure A-4 is a

graph of frequency against wavenumber for a variety of values of spring sti�ness G.

From this and the equation it is clear that for large values of k, and relatively small

values of the sti�ness G, that the curve approaches a straight line. The upshot of this

is that the lower resonant modes will tend to be bunched together, while the higher

resonances will be harmonic. Of course when G = 0 these expression all reduce to the

case of the ideal string. Shown in Figure A-4 is a graph of the frequency dependent wave

speed plotted from equation A.14. Note the peculiar shape of the dispersion curves. By

examining equation A.14 we see that c(w) is both real and positive only for frequency

values above the cuto� frequency wc =
q

G

F
c. For values below the cuto� frequency,

the phase velocity is imaginary and has no physical signi�cance. When w < wc we may
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Figure A-4: Plot of Frequency against Wavenumber and some Dispersion Curves for

String on an elastic foundation. a = 106, b = 105, c = 0.

rearrange equation A.13 in terms of k as

k = �i
�
G

F
� w2

c20

� 1

2

;

and the motion will be given by

u = Aek̂xe�iwt;

where k̂ = ik. This corresponds to a spatially varying but non-propagating disturbance.

A.3.2 The string on a Viscous Foundation

Similarly to introducing dispersion on an ideal string by attaching an elastic foundation,

it is also possible to introduce elementary losses by laying the string on a viscous

foundation. We may consider this to be equivalent to laying the string on a bed of

dash-pots [20, 38, 50]. We include a resistive force proportional the rate of change of

displacement, @u

@t
, to get the following governing equation,

F
@2u

@x2
� �

@u

@t
= �

@2u

@t2
;

where � is the resistive constant of proportionality. Analysis shows that the free prop-

agation of harmonic waves is not possible on a damped string, and that solutions have

the form u = Ae��xei(kx�wt) = Aei[(k+i�)x�wt]. This is very similar to the elastic case

but with a damping term. Placing this solution into the governing equation we may
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Figure A-5: A string on a Viscoelastic Foundation.

solve for K = �(k + iw) where

k =M1=2 cos(�=2); � =M1=2 sin(�=2);

and

M =
w

T

�
�2 + �2w2

�1=2
� = tan�1

�
�

�w

�
:

Now, by examining the expression for k we see that the introduction of a viscous

foundation results in some additional dispersion. We observe how k is dependent upon

both w and the viscosity component �. We also note that the damping is not frequency

dependent. A pictorial representation of a string placed on a viscoelastic foundation is

shown in Figure A-5

A.4 Vibrations in Plates and Sti� Membranes

The equation of motion for the vibrating plate is as follows,

@2u

@t2
+

Eh2

12�(1 � �)
r4u = 0;

where h is the plate thickness, � is the density, E is Young's Modulus, � is Poisson's

ratio and r4 represents

r4 =
@4

@x4
+ 2

@4

@x2@y4
+

@4

@y4

in Cartesian coordinates.
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Writing u(x; y; t) = U(x; y)eiwt yields the time reduced equation,

r4U � 12�(1� �)w2

Eh2
U = 0

)r4U � k4U = 0

) (r2 � k2)(r2 + k2)U = 0;

where k2 =
p
12w
hcL

with cL =
q

E

�(1��2) . Notice that throughout we shall be dealing with

the 2D frequency w = (wx; wy). The frequency dependent speed of wave propagation

may be calculated from c = w=k and is

c(w) =

s
hcLjwjp

12
:

The boundary conditions for a plate are a little more complicated than their counter-

parts when discussing strings and bars since there exist bending moments in each of

the two direction, plus twisting moments. For an edge simply supported at x = a then

u =
@2u

@x2
+ �

@2u

@y2
= 0:

A clamped edge at x = a asserts that

u =
@u

@x
= 0:

The most complicated of edge boundaries arise in the case of a free edge. For such a

boundary at x = a

@2u

@x2
+ �

@2u

@y2
=

@3u

@x3
+ (2� �)

@3u

@x@y2
:

A.4.1 Circular Plates

For a circular plate we consider the reduced equation

(r2 � k2)(r2 + k2)U = 0;

in polar coordinates, r and � where,

r2 =
1

r

@

@r

�
r
@

@r

�
+

1

r2
@2

@�2
:
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Thus U can be a solution of either r2U +k2U = 0 or r2U �k2U = 0. Solutions of the

1st equation are just the usual membrane solutions involving Bessel functions Jm(kr)

so that

U(r; �) = A cos(m� + �)Jm(kr):

Solutions of the 2nd equation involve the hyperbolic Bessel functions de�ned by Im(z) =

i�mJm(iz). The solutions are

U(r; �) = B cos(m� + �)Im(kr);

so that altogether the general solution is

U(r; �) = cos(m� + �) [AJm(kr) +BIm(kr)] :

Of all the boundary conditions the easiest to handle is clamping the rim of the plate

at r = a. That is

U(a; �) =

�
@Z

@r

�
r=a

= 0:

The 1st condition imposes that

AJm(ka) +BIm(ka) = 0 (A.15)

) B = �AJm(ka)
Im(ka)

and hence

U(r; �) = A cos(m� + �)

�
Jm(kr)�

Jm(ka)

Im(ka)
Im(kr)

�
:

The second condition states�
@Z

@r

�
r=a

= J 0m(ka)�
Jm(ka)

Im(ka)
I 0m(ka) = 0

, Im(ka)
@

@r
Jm(ka)� Jm(ka)

@

@r
Im(ka) = 0:

For each m there are many solutions to this equation, giving a sequence kmn of allowed

values for k, and hence m nodal diameters and n nodal circles. These values of kmn
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are

k01 = 3:189=a; k11 = 4:612=a; k21 = 5:904=a

k02 = 6:306=a; k12 = 7:801=a; k22 = 9:400=a

k03 = 9:425=a; k13 = 10:965=a; k23 = 12:566=a

kmn ! (2n+m)�=2aasn!1:

We are then able to calculate the allowed frequencies using

fmn =
1

2�

hclp
12
k2mn:

For tables of mode frequencies for circular plates with clamped, free and simply sup-

ported edges consult [15].

A.4.2 Rectangular Plates

Returning to Cartesian coordinates, setting u(x; y; t) = X(x)Y (y)eiwt in the sti� plate

equation gives,

X
0000
Y + 2X

00
Y
00
+XY

0000 � �4XY = 0;

where �4 = 12�(1��2)w2

Eh2
. Now, in order for the separation of variables to occur, we must

have that

Y
00
= �
2Y; Y 0000

= 
4Y

or

X
00
= ��2X;X 0000

= �4X;

or both. In the 2nd case, for example, we would have

�4Y � 2�2Y
00
+ Y

0000 � �4Y = 0:

If the 2nd case does indeed hold then we have X = sin(�x) or X = cos(�x) and we

may consider the various possibilities for the boundary conditions.

If the edge is simply supported at x = 0 and x = a,

u(0) = X(0)Y (y) = 0
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and �
@2u

@x2
+ �

@2u

@y2

�
x=0

= X(0)(��2Y (y) + �Y
00
(y) = 0;

hence X(0) = 0, since @2u

@x2
+ � @

2u

@y2
= X

00
Y + �XY

00
= ��2XY + �XY

00
. Similarly we

may show that we require X(a) = 0, and hence

Xn(x) = sin(�nx);

where �n = n�

a
.

Now, for a clamped edge, we would require u(0) = @u

@x
(0) = 0. This would mean

that

X(0)Y (y) = X
0
(0)Y (y) = 0

) X(0) = X
0
(0) = 0;

which is clearly not possible if X = sin(�x); cos(�x). Finally, for a free edge we would

require

X(0)
h
��2Y (y) + �Y

00
(y)
i
= 0

X
0
(0)
h
��2Y (y) + (2� �)Y

00
(y)
i
= 0;

which would again require X(0) = X
0
(0) = 0.

Thus we conclude that in order to separate variables, we require that at least two

opposite edges are simply supported (meaning 6 combinations). Now suppose that the

y-edge is simply supported at y = 0 and y = b. We �nd that this gives

Ym(x) = sin(
my);

where 
m = m�

b
. Placing Xn and Ym into the time reduced equation yields

(�4n + 2�2n

2
m + 
4m � �4)XnYm = 0

)
�
(�2n + 
2n)

2 � �4
�
XnYm = 0:

Recalling that �4 = 12�(1��2)
Eh2

w2 we may now calculate the allowed frequencies for a
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simply supported rectangular plate,

�4 = (�2n + 
2n)
2

) w2
mn =

Eh2

12�(1 � �2)
(�2n + 
2n)

2

) wmn =

s
Eh2

12�(1 � �2)
(�2n + 
2n)

) wmn = �2

s
Eh2

12�(1 � �2)

��n
a

�2
+
�m
b

�2�
:

The case of all four edges being simply supported is just one of six combinations where

at least two opposite edges are simply supported. For the remaining cases consult [20].

A.4.3 Bending Sti�ness in a Membrane

Just as in the case with a sti� string, we add a plate like term to the ideal membrane

equation to give

@2u

@t2
=

F

�
r2u� Eh2

12�(1 � �)
r4u;

where the new parameter is the tension F . Assuming a solution z = AJm(kr) cos(m�) cos(wt)

leads to the following quadratic in k2,

k4 +
c2

S4
k2 � �4 = 0;

where S4 = Eh2

12�(1��2) , c
2 = F

�
and � is de�ned as before. For a clamped boundary

condition, this gives rise to the following allowed frequencies,

fmn = kmn

c

2�

r
1 +

S4

c2
k2mn;

where the values kmn are the same as those found for the circular membrane in the

absence of sti�ness. Note also that removing the sti�ness reduces the equation for the

allowed frequencies to that of the ideal membrane in the absence of sti�ness, while

removing the tension results in modal frequencies for a clamped circular plate.



Appendix B

Finite Di�erence Schemes

It is perhaps necessary to make a few comments and describe a few mathematical

derivations behind some of the Finite Di�erence methods employed throughout this

thesis. In this short appendix we quickly review the derivation of a �nite di�erence

approximation and resulting numerical schemes, then describe a frequency domain

based analysis method which is used repeatedly during the course of this work. Finally

we list the most relevant schemes used during the thesis for reference, and include a

description of an interpolated scheme for completeness. There are many introductory

texts on Finite Di�erence Schemes (FDS) for approximating PDEs such as [22, 47].

B.1 Deriving Finite Di�erence Approximations

Finite di�erences may be used to approximate partial derivatives in the following way.

Consider approximating the spatial derivative @y

@x
, which is of course the slope of the

curve y, at the point x = a. By considering the value of the curve y at a point x = a+�,

we may approximate the gradient at x = a by

@y

@x

���
x=a

� y(a+�)� y(a)

�
;

as shown in Figure B-1. Similarly we may approximate a time derivative by considering

the value of the function y at time instants t = s and t = s+ T , that is,

@y

@t

���
t=s

� y(s+ T )� y(s)

T
:

143
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a a+�

y

y

y(a+�)

x

Figure B-1: Deriving a �rst order di�erence.

Now, by discretising the x axis into sections of length �, and by splitting time into

intervals of duration T , we may represent the function y(x; t) at discrete points by

Yj(n) = y(j�; nT );

where n and j are integers. Consequently the approximations above may be recast as

@y

@x

���
x=j�

� Yj+1(n)� Yj(n)

�
;

and

@y

@x

���
t=nT

� Yj(n+ 1)� Yj(n)

T
:

We call � the spatial step and T the time step.

By simply re-applying the �rst order di�erences to themselves we may derive �nite

di�erence approximations to second order derivatives so that.

@
2
y

@x2
� Yj�1(n)� 2Yj(n) + Yj+1(n)

�2
;

@
2
y

@t2
� Yj(n� 1)� 2Yj(n) + Yj(n+ 1)

T 2
;

We may derive �nite di�erences for 2nd order 2D derivatives by de�ning a grid of

points so that a function u(x; y; t) is discretised by

Ui;j(n) = u(i�; j�; nT ):
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Some commonly used �nite di�erences are listed below,

@
2
u

@x2
� Ui�1;j(n)� 2Ui;j(n) + Ui+1;j(n)

�2
;

@2u

@y2
� Ui;j�1(n)� 2Ui;j(n) + Ui;j+1(n)

�2
;

@2u

@t2
� Ui;j(n� 1)� 2Ui;j(n) + Ui;j(n+ 1)

T 2
:

Similar di�erences may derived in 3D and for higher order or crossed derivatives.

B.2 Di�erence Schemes for the Wave Equation

The digital waveguide can be thought of as a discretisation of the D'Alembert solution

to the 1D wave equation, or as a structure which is equivalent to a FDS for the wave

equation. For all the waveguide structures discussed in this thesis we may derive

equivalences to centered FDSs for the appropriate PDE. In this section we describe

simple FDSs for the wave equation in one, two and three dimensions which are referred

to in the general body of the thesis.

The following di�erence scheme can be used for the 1D wave equation.

Uj(n+ 1)� 2Uj(n) + Uj(n� 1) = c2
T 2

�2

h
Uj+1(n)� 2Uj(n) + Uj�1(n)

i
:

For a square grid straight-forward application of the �nite di�erences described

above to the 2D wave equation results in the scheme,

Ui;j(n+ 1)� 2Ui;j(n) + Ui;j(n� 1) = c2
T 2

�2

h
Ui+1;j(n)� 2Ui;j(n) + Ui�1;j(n)

+Ui;j+1(n)� 2Ui;j(n) + Ui;j+1(n)
i
:

We may also consider points arranged on a triangular grid, where the scheme becomes.

Ui;j(n+ 1)� 2Ui;j(n) + Ui;j(n� 1) = c2
T 2

�2

2

3

h
Ui+1;j(n)� 2Ui;j(n) + Ui�1;j(n)

+ U
i+ 1

2
;j+

p
3

2

(n)� 2Ui;j(n) + U
i� 1

2
;j�

p
3

2

(n)

+ U
i� 1

2
;j+

p
3

2

(n)� 2Ui;j(n) + U
i+ 1

2
;j�

p
3

2

(n)
i
:

Using a simple cubic grid we may extend the FDS method for the 3D wave equation.

This time we have a point u(x; y; z; t) discretised by Ui;j;k(n) = u(i�; j�; k�; nT ) so



APPENDIX B. FINITE DIFFERENCE SCHEMES 146

that the simplest explicit scheme becomes

Ui;j;k(n+ 1)� 2Ui;j;k(n) + Ui;j;k(n� 1) = c2
T 2

�2

h
Ui+1;j;k(n)� 2Ui;j;k(n) + Ui�1;j;k(n)

+ Ui;j+1;k(n)� 2Ui;j;k(n) + Ui;j+1;k(n)

+ Ui;j;k+1(n)� 2Ui;j;k(n) + Ui;j;k�1(n)
i
: (B.1)

Using the Dodecahedral Mesh described in chapter 3 gives the di�erence scheme

Ui;j;k(n+ 1)� 2Ui;j;k(n) + Ui;j;k(n� 1) =

c2
T 2

�2

1

2

h
Ui+1;j;k(n)� 2Ui;j;k(n) + Ui�1;j;k(n)

+U
i+ 1

2
;j+

p
3

2
;k
(n)� 2Ui;j;k(n) + U

i� 1

2
;j+

p
3

2
;k
(n)

+U
i� 1

2
;j�

p
3

2
;k
(n)� 2Ui;j;k(n) + U

i+ 1

2
;j�

p
3

2
;k
(n)

+U
i;j+ 1p

3
;k+
q

2

3

(n)� 2Ui;j;k(n) + U
i;j� 1p

3
;k�
q

2

3

(n)

+U
i� 1

2
;j� 1

2
p
3
;k+
q

2

3

(n)� 2Ui;j;k(n) + U
i+ 1

2
;j+ 1

2
p
3
;k�
q

2

3

(n)

+U
i+ 1

2
;j� 1

2
p
3
;k+
q

2

3

(n)� 2Ui;j;k(n) + U
i� 1

2
;j+ 1

2
p
3
;k�
q

2

3

(n)
i
:

B.3 Von Neumann Analysis

Throughout this thesis we use the technique of Von Neumann analysis to examine the

stability and phase information of various schemes [47]. Through the use of the Fourier

transform the determination of stability of a scheme is reduced to a few simple algebraic

considerations. To demonstrate the procedure we consider a general 1D multi-step

scheme, which we may write as

Vm(n+ 1) =

KX
k=�K

LX
l=0

ak;n�lVm+k(n� l); (B.2)

where the ak;n�l are constant coeÆcients. We now take the Fourier transform of equa-

tion (B.2) recalling that if V̂ n
m(w) is the Fourier transform of Vm(n) then

V̂ n

m+k(w) = eikwV̂ n

m(w)
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is the Fourier transform of Vm+k(n). Consequently the Fourier transform of equation

(B.2) can be written as

V̂ n+1
m (w) =

KX
k=�K

LX
l=0

ak;n�le
ikwV̂ n�l

m (w)

=

KX
k=�K

eikw
LX
l=0

ak;n�lV̂
n�l
m (w): (B.3)

Now in this form of analysis we search for an spectral ampli�cation factor g(w) which

will tell us how the scheme changes in the frequency domain when the solution is ad-

vanced by one time step. Thus we look for solutions of the form V̂ n
m(w) = g(w)V̂ n�1

m (w).

If this identity held, then by induction we could write V̂ n
m(w) = gnV̂ 0

m(w). The equation

(B.3) can then be expressed as

gn+1V̂
0
m(w) =

KX
k=�K

eikw
LX
l=0

ak;n�lg
n�lV̂ 0

m(w):

Dividing through by V̂ 0
m(w) gives the ampli�cation polynomial whose roots give the

ampli�cation factor,

gn+1 =

KX
k=�K

LX
l=0

eikwak;n�lg
n�l:

Thus we have shown that advancing the scheme by one time step is equivalent to

multiplying the Fourier transform of the solution by the ampli�cation factor g(w). This

function is dependent on frequency, and we may consider its magnitude, which tells us

about the stability of the scheme, and we may consider its phase, which will tell us the

speed of wave propagation within the scheme. By regarding these two properties we

may decide how well the scheme approximates the PDE in question. These techniques

can be equally be applied in two or higher dimensions.

B.4 Interpolated Schemes

B.4.1 Interpolated Schemes in 2D

We may consider approximating a two-dimensional, second order spatial derivative at a

point using centered di�erences, and using eight surrounding points, placed one spatial
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step away from the desired point as follows.

@2v

@x2
+
@2v

@y2
� Vi�1;j(n)� 2Vi;j(n) + Vi+1;j(n)

+ Vi;j�1(n)� 2Vi;j(n) + Vi;j+1(n)

+ V
i+ 1p

2
;j+ 1p

2

(n)� 2Vi;j(n) + V
i� 1p

2
;j� 1p

2

(n)

+ V
i� 1p

2
;j+ 1p

2

(n)� 2Vi;j(n) + V
i+ 1p

2
;j� 1p

2

(n):

Consequently we are required to evaluate four points which do not fall on grid points

of the square mesh. We thus consider approximating the values at these points using

bilinear interpolation as follows,

V
i+ 1p

2
;j+ 1p

2

(n) � waVi+1;j(n) + waVi;j+1(n) + wdVi+1;j+1(n) +wcVi;j(n)

V
i� 1p

2
;j+ 1p

2

(n) � waVi�1;j(n) + waVi;j+1(n) + wdVi�1;j+1(n) +wcVi;j(n)

V
i� 1p

2
;j� 1p

2

(n) � waVi�1;j(n) + waVi;j�1(n) + wdVi�1;j�1(n) +wcVi;j(n)

V
i+ 1p

2
;j� 1p

2

(n) � waVi;j�1(n) + waVi+1;j(n) + wdVi+1;j�1(n) +wcVi;j(n);

where wa = a(1 � a), wd = a2, wc = (1 � a)2, with a = 1=
p
2. Note that bilinear

interpolation is the process by which we may approximate the velocity at a point
between mesh nodes by considering the velocity at the four mesh nodes surrounding
the point. It is termed bilinear as it produces a function which is linear along each
edge of each square mesh region. For a general point, the interpolation coeÆcients
can be calculated by regarding Figure B-2. This gives the interpolation coeÆcients as
wx = ax(1� ax), wy = ay(1� ax), wd = axay and wc = (1� ax)(1 � ay). Of course in
the above interpolation, ax = ay = a. Using these approximations we may now write
down a �nite di�erence scheme for the 2D wave equation,

Vi;j(n+ 1)� 2Vi;j(n) + Vi;j(n� 1) = �
2
c
2
n
wdVi�1;j+1(n) + (1 + 2wa)Vi;j+1(n) + wdVi+1;j+1(n)

+ (1 + 2wa)Vi�1;j(n) + (4wc � 8)Vi;j(n) + (1 + 2wa)Vi+1;j(n)

+ wdVi�1;j�1(n) + (1 + 2wa)Vi;j�1(n) + wdVi+1;j�1(n)
o
;

where � = T=�.

We may de�ne a digital waveguide mesh which corresponds to this scheme as

follows [8]. Consider a square mesh of nine port junctions, where each junction is

connected to its eight neighbours and includes a self loop of one unit of delay. The

impedance of the waveguides in the axial directions are set to Ya, the impedances in

diagonal directions are Yb, while the self loop has an impedance Yc. Then the junction
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ax

1� ax

1� ay

ay

�

wy wd

wc wx

ay = sin�

ax = cos�

Figure B-2: Calculating Bilinear Interpolation CoeÆcients.

velocity can be written in terms of its input velocities as

Vi;j(n+ 1) =
2

YJ

9X
i=1

YkV
+
i;j;k

(n+ 1);

where Yk = Ya; Yb; Yc, and YJ is the total junction impedance. Using the standard

method of writing inputs to one junction as outputs of neighbouring junctions at the

previous time step we have,

Vi;j(n+ 1) =
2

YJ

h
YbVi�1;j+1(n) + YaVi;j+1(n) + YbVi+1;j+1(n)

+ YaVi�1;j(n) + YcVi;j(n) + YaVi+1;j(n)

+ YbVi�1;j�1(n) + YaVi;j�1(n) + YbVi+1;j�1(n)
i

� Vi;j(n� 1):

Now setting Yb = wd, Ya = 1 + 2wa and Yc = 4wc gives us our equivalence to the
interpolated �nite di�erence scheme described previously. Using these values for the
impedance we also �nd that 2

YJ
= 1

4
, giving a �nal expression

Vi;j(n+ 1)� 2Vi;j(n) + Vi;j(n� 1) =
2

YJ

n
wdVi�1;j+1(n) + (1 + 2wa)Vi;j+1(n) + wdVi+1;j+1(n)

+ (1 + 2wa)Vi�1;j(n) + (4wc � 8)Vi;j(n) + (1 + 2wa)Vi+1;j(n)

+ wdVi�1;j�1(n) + (1 + 2wa)Vi;j�1(n) + wdVi+1;j�1(n)
o
:

We may now calculate the dispersion for the interpolated waveguide mesh/FDS. Pro-

ceeding as usual we may calculate the spectral ampli�cation factor g by solving the
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Figure B-3: (a) Dispersion Plot for Interpolated Waveguide Mesh. (b) Max and Min

Dispersions for Interpolated Waveguide Mesh

quadratic equation g2 +Bg + 1 = 0 where,

b =
1

2

�
wd cos(wx +wy) + wd cos(wx + wy)

+(1 + 2wa) cos(wx) + (1 + 2wa) cos(wy) + 2wc � 4
i
;

where this time (wx; wy) is the two dimensional frequency vector. As usual we have that

b2 � 4 < 0, giving complex solutions for the ampli�cation factor, and hence stability.

Of course, stability is guaranteed due to the passivity of the waveguide mesh. The

dispersion is then calculated as the normalised phase angle of the ampli�cation factor

and is shown as a grey scale plot in Figure B-3. Also shown are cross-sections indicating

the extremes of dispersion through di�erent angles. It shows that there is only a little

angular dependence, and it certainly improves upon the standard square mesh, but the

triangular mesh provides the most desirable characteristics.

In this section we introduced a method which altered a regular square mesh to give

near direction independent dispersion error. It was �rst introduced in [42], and was

then extended to correct dispersion error in [43]. The idea was originally described

as being a bilinearly deinterpolated waveguide mesh. It was proposed that by extend-

ing the number of propagation directions, we would theoretically be able to produce

a mesh exhibiting angularly independent dispersion error. The problem with the di-

agonal directions would be overcome by spreading their contributions to each of the

four nodes surrounding the theoretical node using inverse bilinear interpolation called

deinterpolation. However we found that attempting this using scattering waves, so that

the output in a diagonal direction was deinterpolated onto the diagonal inputs of the

four surrounding junctions, was not equivalent to the �nite di�erence scheme de�ned

in the literature. In fact, by deriving the process here, we have shown that no deinter-
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polation actually takes place. The method may be best described as an interpolated

�nite di�erence scheme with an equivalent waveguide mesh implementation.

B.4.2 Interpolated Schemes in 3D

The 2D interpolated waveguide mesh/FDS described in the previous section was shown

to produce near direction independent dispersion error, although we considered the

triangular mesh to be the best 2D geometry. However, when we extend into three

dimensions, it becomes harder to �nd desirable mesh structures (See chapter 3). We

now describe an interpolated 3D scheme derived by interpolating a theoretical 26-

dimensional mesh. A 3D second order spatial derivative may be approximated by a

26-directional di�erence with a unit spatial step size as

@2v

@x2
+
@2v

@x2
+
@2v

@x2
� Vi+1;j;k(n)� 2Vi;j;k(n) + Vi�1;j;k(n)

+ Vi;j+1;k(n)� 2Vi;j;k(n) + Vi;j�1;k(n)

+ Vi;j;k+1(n)� 2Vi;j;k(n) + Vi;j;k�1(n)

+ Vi+b;j+b;k(n)� 2Vi;j;k(n) + Vi�b;j�b;k(n)

+ Vi�b;j+b;k(n)� 2Vi;j;k(n) + Vi+b;j�b;k(n)

+ Vi+b;j;k+b(n)� 2Vi;j;k(n) + Vi�b;j;k�b(n)

+ Vi�b;j;k+b(n)� 2Vi;j;k(n) + Vi+b;j;k�b(n)

+ Vi;j+b;k+b(n)� 2Vi;j;k(n) + Vi;j�b;k�b(n)

+ Vi;j�b;k+b(n)� 2Vi;j;k(n) + Vi;j+b;k�b(n)

+ Vi+a;j+a;k+a(n)� 2Vi;j;k(n) + Vi�a;j�a;k�a(n)

+ Vi�a;j+a;k+a(n)� 2Vi;j;k(n) + Vi+a;j�a;k�a(n)

+ Vi+a;j�a;k+a(n)� 2Vi;j;k(n) + Vi�a;j+a;k+a(n)

+ Vi�a;j�a;k+a(n)� 2Vi;j;k(n) + Vi+a;j+a;k�a(n);

where a = 1p
3
and b = 1p

2
. Proceeding in an analogous fashion to the 2D case we

now approximate the diagonal contributions using interpolation. Interpolation in each

plane is bilinear so that, for example,

Vi+b;j+b;k(n) � �aVi+1;j;k(n) + �aVi;j+1;k(n) + �dVi+1;j+1;k(n) + �cVi;j;k(n);
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where �a = b(1� b), �c = (1� b)2 and �d = b2. We also use tri-linear interpolation in

the following way,

Vi+a;j+a;k+a(n) � wa (Vi+1;j;k(n) + Vi;j+1;k(n) + Vi;j;k+1(n))

+ wb (Vi+1;j+1;k(n) + Vi+!;j;k+1(n) + Vi;j+1;k+1(n))

+ wdVi+1;j+1;k+1(n) + wcVi;j;k(n);

where wa = a(1� a)2, wb = a2(1� a), wd = a3 and wc = (1� a)3 are the interpolation

coeÆcients. We are thus able to derive a FDS which approximates the 3D wave equation

as follows,

Vi;j;k(n+ 1)� 2Vi;j;k(n) + Vi;j;k(n� 1) = �c2
X
l;m; n

2 [�1; 1]

�
hi+l;j+m;k+nVi;j;k(n)

�
� 2Vi;j;k(n);

where � = T 2=�2, and the coeÆcients hi;j;k are as follows,

h1;1;3 = h1;3;3 = h3;3;3 = h3;1;3 = h1;1;1 = h1;3;1 = h3;3;1 = h3;1;1 = wd

h1;2;3 = h2;3;3 = h3;2;3 = h2;1;3 = h1;1;2 = h1;3;2 = h3;3;2 = h3;1;2 = h1;2;1 = h2;3;1

= h3;2;1 = h2;1;1 = 2wb + �d

h2;2;3 = h2;2;1 = h1;2;2 = h2;3;2 = h3;2;2 = h2;1;2 = 4(wa + �a) + 1

h2;2;1 = 8wc + 12�c:

Again analogously to the 2D case, we may derive a waveguide mesh which is entirely

equivalent to this FDS. We create a 3D square mesh of scattering junctions comprising

26 ports in the propagation directions, together with a self-loop. A small portion of

the scattering junction is shown in Figure B-4. It shows the input impedances from

the typical directions and we set the self-loop impedance to Rc. It can be shown that

by setting the impedances to Ra = 4(wa + �a) + 1, Rb = 2wb + �d, Rd = wd and

Rc = 8wc + 12�c, the resulting FDS is equivalent to equation B.4 with �2c = 1=13.

Furthermore, we may also compute the dispersion of this scheme. Again by taking

Fourier transforms we �nd the spectral ampli�cation factor by solving the quadratic
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Figure B-4: Scattering junction in the 3-d interpolated waveguide mesh.

g2 + bg + 1 = 0 where,

b =
2

13

�
Ra[cos(wx) + cos(wy) + cos(wz)]

+Rd[cos(wx +wy + wz) + cos(wx �wy + wz)

+ cos(wx + wy � wz) + cos(wx � wy � wz)]

+Rb[cos(wx + wy) + cos(wx � wy) + cos(wx + wz)

+ cos(wx � wz) + cos(wy + wz) + cos(wy � wz)]

+Rc=2
�
:

Shown in Figure B-5 are grey scale plots of dispersion as viewed through a variety of

cross-sections of the interpolated mesh. Firstly, they are almost identical, and secondly

they produce near direction independent dispersion error. Such a scheme had been

used in the �nite di�erence domain to produce some elementary models of 3D acoustic

spaces in [40].
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Figure B-5: Dispersion error for various cross sections through interpolated waveguide

mesh. (a) wx = 0, (b) wx = wz, (c) wx = wy = wz, (d) wy = wz =
1p
3
wx.



Appendix C

Digital Signal Processing

Throughout the course of this thesis we have made reference to many elements from

the vast �eld of digital signal processing so we provide some basic de�nitions here.

Digital waveguides have provided a link between numerical analysis and the theory of

digital signals. In all the models described in the work, we have applied the Discrete

Fourier Transform to extract frequency information. We have also considered the use of

digital �lters. For a complete introduction to DSP and its application to music sound

synthesis, the reader is directed towards [32, 36].

C.1 Transforms

Given a signal x(n) the Z-transform is computed as

X(z) =

1X
n=�1

x(n)z�n; (C.1)

where z is a complex variable. There are some useful properties of the Z-transform

when dealing with signals. Suppose y(n) = x(n� k) then

Y (z) = z�kX(z):

So that delaying a signal by k samples results in multiplying its Z-transform by z�k.

If g(n) = x(n) � y(n) then

G(z) = X(z)Y (z):

It may also be interesting to note that the Z-transform is the discrete time equivalent

of the Laplace Transform.

155
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The Discrete Fourier Transform of a signal x(n) is de�ned as

X̂(w) =

1X
n=�1

x(n)e�inw: (C.2)

Note that the discrete Fourier transform is a special case of the Z-transform for points

on the unit circle in the complex plane, that is z = eiw. By using this transform we

represent the signal in terms of its frequency distribution. We use the Fourier transform

to analyse the frequency content.

C.2 Digital Filters

A digital �lter may be broadly described as an algorithm which processes a digital

signal. That is, the �lter produces an output signal y(n) by manipulating values from

an input signal x(n). In this thesis we shall deal with linear, causal �lters which can

be represented by the digital �lter equation

y(n) =

MX
i=0

aix(n� i)�
NX
i=0

biy(n� i); (C.3)

where the ai and bi are constant coeÆcients. By feeding an impulse (one whose �rst

value is one, and all subsequent values are zero) in to the �lter, the output is known as

the impulse response of the �lter. If this response is denoted by h(n) then the output

of the �lter can be written as

y(n) = h(n) � x(n);

where � denotes convolution. When each bi = 0 in equation (C.3) then the output

depends only on previous inputs, so that the impulse response must eventually die

away. Such a �lter is known as a �nite impulse response (FIR) �lter. When some of

the bi are non-zero, then the impulse response will never die away completely, and such

a �lter is called an in�nite impulse response (IIR) �lter.

A good way to describe and analyse a �lter is to consider its form in the Z-domain.

By taking the Z-transform of equation (C.3) we have

Y (z) =
MX
i=0

aiz
�iX(z)�

NX
i=0

biz
�iY (z);
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which may be rearranged to give

Y (z) = H(z)X(z);

where

H(z) =
a0 + a1z

�1 + � � �+ aMz�M

1 + b1z�1 + � � �+ bNz�N
:

We call H(z) the transfer function of the �lter, and note that it is the Z-transform of

the impulse response h(n). We could also derive this result by recalling that convolution

in the digital domain becomes multiplication in the Z-domain.

Given the transfer function H(z) we may examine the e�ect of the �lter on certain

frequencies on the input signal by evaluating the transfer function at z = eiw. Thus

the frequency response H(eiw) of the �lter relates the Fourier Transforms of the input

and output signals by

Y (eiw) = H(eiw)X(eiw):

Thus the magnitudes and phases of the Fourier Transforms are related by

jY (eiw)j = jH(eiw)jjX(eiw)j
argfY (eiw)g = argfH(eiw)g+ argfX(eiw)g:

We call jY (eiw)j the magnitude response or gain of the �lter. It tells us the way in

which frequencies are enhanced or suppressed by the �lter. The quantity argfY (eiw)g
is called the phase response and relates to the positions of the frequencies along the

frequency axis. Finally we may de�ne the phase delay as a quantity in samples

G(w) = �argfY (eiw)g
w

:

C.2.1 Allpass Filters

An allpass �lter is one in which the gain is unity for all frequencies. That is, the �lter

lets all frequencies pass through. Such a �lter will, however, possess a non-linear phase

response. A �rst order allpass �lter has transfer function

A(z) =
a+ z�1

1 + az�1
:
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It is easy to check that this �lter has unit magnitude

jH(eiw)j2 = H(eiw)H(e�iw)

=
a+ eiw

1 + aeiw
a+ e�iw

1 + ae�iw

=
1 + a2

1 + a2

= 1:

The phase response may be expressed as

argfH(eiw)g = �w + 2 tan�1
�

a sin(w)

1 + a cos(w)

�
:

Note that a single unit of delay, expressed as H(z) = z�1 will have a phase response

argfH(eiw)g = �w so that the allpass �lter represents one unit of delay plus some

amount which is some non-linear function of frequency.

C.2.2 Fractional Delay Approximation

It is often useful to be able to measure the value of a signal between sample values

and consequently we �nd the need to delay a signal by less than one unit. This is

often termed interpolation. Ideally we should seek a �lter with the required fractional

phase delay and with unit magnitude. However this is unfortunately not possible.

Nonetheless, there exist �lters which approximate fractional delay, but with some trade-

o�s. The �lters presented here are described well and analysed in depth in [24] and [51].

Using FIR Filters

Firstly we consider some FIR interpolators. These can be shown to provide good

fractional delay, but exhibit a low-pass nature in the magnitude response. The simplest

of these �lters is the 1st order Lagrange Interpolator described by the transfer function

H(z) = 1� d+ dz�1;

where d is the value of the fractional delay required. Shown in Figure C-1 are the

magnitude response and phase delay of the �lter. They clearly show that the required

delay is well represented over low frequencies, but the lowpass nature of the magnitude

response is quite clear. The results can be improved by using higher order �lters and

the interested reader is pointed towards [24] and [51].
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Figure C-1: Magnitude Response and Phase Delay of 1st Order Lagrange Interpolator.
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Figure C-2: Phase Delay of 1st Order Thiran Allpass Filter.

Using Allpass Filters

In order to achieve fractional delay, with a 
at magnitude response, it is suggested to

use allpass �lters. The 1st order Thiran allpass �lter has a �lter coeÆcient set to

a =
1� d

1 + d
;

where d is the desired fractional delay. The phase delay of such a �lter is shown in

Figure C-2 for various values of d. We note that the delay is exactly as required at zero

frequency, and that the �lter is most accurate at other frequencies for values of delay

close to d = 1. In fact it has been shown in [51] that ideal useful range of this �lter

is for delays in the region d 2 [0:5; 1:5]. Better performance is achieved using higher

order allpass �lters, and again the interested reader is pointed towards [24] and [51].



Appendix D

Additional Proofs

D.1 Equivalence Between Waveguide Sti� String Model

and a FDS

In this section we show how to compute the equivalence between the waveguide sti�

string model described in section 5.3 and a FDS for the sti� string equation. Referring

160
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to Figure 5-9 we begin with the scattering junction equation for a velocity junction.

Vj(n+ 1) =
2

YJ

�
YEV

+
j;0(n+ 1) + YEV

+
j;1(n+ 1) + YEV

+
j;2(n+ 1) + YEV

+
j;3(n+ 1)

+ YFV
+
j;4(n+ 1) + YFV

+
j;5(n+ 1)

�

=
2

YJ

�
YE ~V �

j�1;1(n+
1

2
) + YE ~V �

j+1;0(n+
1

2
)� YE ~V �

j;2(n+
1

2
)� YE ~V �

j;3(n+
1

2
)

+ YFV
�
j�1;5(n) + YFV

�
j+1;4(n)

�

=
2

YJ

�
�M�

j�1;1(n+
1

2
)�M�

j+1;0(n+
1

2
) +M�

j;2(n+
1

2
) +M�

j;3(n+
1

2
)

�

+
2YF
YJ

�
Vj�1(n) + Vj+1(n)

�
� 2YF

YJ

�
V +
j�1;5(n) + V +

j+1;4(n)

�

=
2

YJ

�
�Mj�1(n+

1

2
)�Mj+1(n+

1

2
) + 2Mj(n+

1

2
)

�

� 2

YJ

�
�M+

j�1;1(n+
1

2
)�M+

j+1;0(n+
1

2
) +M+

j;2(n+
1

2
) +M+

j;3(n+
1

2
)

�

+
2YF
YJ

�
Vj�1(n) + Vj+1(n)

�
� 2YF

YJ

�
V �
j;4(n� 1) + V �

j;5(n� 1)

�

=
2

YJ

�
�Mj�1(n+

1

2
)�Mj+1(n+

1

2
) + 2Mj(n+

1

2
)

�

� 2

YJ

�
� YE ~V +

j�1;1(n+
1

2
)� YE ~V +

j+1;0(n+
1

2
) + YE ~V +

j;2(n+
1

2
) + YE ~V +

j;3(n+
1

2
)

�

+
2YF
YJ

�
Vj�1(n) + Vj+1(n)

�
� 2YF

YJ

�
V �
j;4(n� 1) + V �

j;5(n� 1)

�

=
2

YJ

�
�Mj�1(n+

1

2
)�Mj+1(n+

1

2
) + 2Mj(n+

1

2
)

�

� 2

YJ

�
� YEV

�
j;0(n)� YEV

�
j;1(n)� YEV

�
j;2(n) + YEV

�
j;3(n)

�

+
2YF
YJ

�
Vj�1(n) + Vj+1(n)

�
� 2YF

YJ

�
V �
j;4(n� 1) + V �

j;5(n� 1)

�
(D.1)

Now we may write

2YE
YJ

�
V �
j;0(n) + V �

j;1(n) + V �
j;2(n) + V �

j;3(n)

�
=

2YE
YJ

�
4Vj(n)

�
� 2YE

YJ

�
V +
j;0(n) + V +

j;1(n) + V +
j;2(n) + V +

j;3(n)

�
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and we may also say that

2YE
YJ

�
V +
j;0(n+ 1) + V +

j;1(n+ 1) + V +
j;2(n+ 1) + V +

j;3(n+ 1)

�

=
2

YJ

�
�Mj�1(n+

1

2
)�Mj+1(n+

1

2
) + 2Mj(n+

1

2
)

�

+
2YE
YJ

�
V �
j;0(n) + V �

j;1(n) + V �
j;2(n) + V �

j;3(n)

�

so that

2YE
YJ

�
V +
j;0(n) + V +

j;1(n) + V +
j;2(n) + V +

j;3(n)

�

=
2

YJ

�
�Mj�1(n�

1

2
)�Mj+1(n�

1

2
) + 2Mj(n�

1

2
)

�

+
2YE
YJ

�
V �
j;0(n� 1) + V �

j;1(n� 1) + V �
j;2(n� 1) + V �

j;3(n� 1)

�
:

Consequently equation (D.1) can be rewritten as

Vj(n+ 1) =
2

YJ

�
�Mj�1(n+

1

2
)�Mj+1(n+

1

2
) + 2Mj(n+

1

2
)

�

+
2YE
YJ

�
4Vj(n)

�
� 2YE

YJ

�
V +
j;0(n) + V +

j;1(n) + V +
j;2(n) + V +

j;3(n)

�

+
2YF
YJ

�
Vj�1(n) + Vj+1(n)

�
� 2YF

YJ

�
V �
j;4(n� 1) + V �

j;5(n� 1)

�

=
2

YJ

�
�Mj�1(n+

1

2
)�Mj+1(n+

1

2
) + 2Mj(n+

1

2
)

�
+

2YE
YJ

�
4Vj(n)

�
� 2

YJ

�
�Mj�1(n�

1

2
)�Mj+1(n�

1

2
) + 2Mj(n�

1

2
)

�

� 2YE
YJ

�
V �
j;0(n� 1) + V �

j;1(n� 1) + V �
j;2(n� 1) + V �

j;3(n� 1)

�

+
2YF
YJ

�
Vj�1(n) + Vj+1(n)

�
� 2YF

YJ

�
V �
j;4(n� 1) + V �

j;5(n� 1)

�

= � 2

YJ

�
Mj�1(n+

1

2
)� 2Mj(n+

1

2
) +Mj+1(n+

1

2
)

�

+
2

YJ

�
Mj�1(n�

1

2
)� 2Mj(n�

1

2
) +Mj+1(n�

1

2
)

�

+
2YE
YJ

�
4Vj(n)

�
+

2YF
YJ

�
Vj�1(n) + Vj+1(n)

�
� Vj(n� 1): (D.2)
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Now from equation (5.13) we know that

Mj(n+
1

2
)�Mj(n�

1

2
) =

1

2Z

�
Vi+1(n)� 2Vi(n) + Vi�1(n)

�
;

so that

Mj�1(n+
1

2
)�Mj�1(n�

1

2
) =

1

2Z

�
Vi(n)� 2Vi�1(n) + Vi�2(n)

�

Mj+1(n+
1

2
)�Mj+1(n�

1

2
) =

1

2Z

�
Vi+2(n)� 2Vi+1(n) + Vi(n)

�
:

Hence equation (D.2) can be rearranged as

Vj(n+ 1) + Vj(n� 1) = � 1

2Z

2

YJ

�
Vj+2(n)� 4Vj+1(n) + Vj(n)� 4Vj�1(n) + Vj�2(n)

�

+
2YE
YJ

�
4Vj(n)

�
+

2YF
YJ

�
Vj�1(n) + Vj+1(n)

�
:

Now subtracting 2VJ(n) from either side gives

Vj(n+ 1)� 2Vj(n) + Vj(n� 1) =

� 1

2Z

2

YJ

�
Vj+2(n)� 4Vj+1(n) + Vj(n)� 4Vj�1(n) + Vj�2(n)

�

+
2YE
YJ

�
4Vj(n)

�
+

2YF
YJ

�
Vj�1(n) + Vj+1(n)

�
� 2

YJ
(4YE + 2YF )Vj(n):

Now rearranging yields the following FDS.

Vj(n+ 1)� 2Vj(n) + Vj(n� 1) =

� YE

YJ

�
Vj+2(n)� 4Vj+1(n) + Vj(n)� 4Vj�1(n) + Vj�2(n)

�

+
2YF
YJ

�
Vj�1(n)� 2Vj(n) + Vj+1(n)

�
:

This scheme is of the form of the required FDS for the sti� string equation and

impedance parameters are matched using the relationships described in section 5.3.2.
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D.2 Equivalence Between Waveguide Sti� Membrane Model

and a FDS

In a similar procedure to the one of the previous section we now derive the equivalence

between the waveguide sti� membrane model of section 6.2 and a corresponding FDS

for the sti� membrane equation (6.14). The calculation proceeds in a similar manner

to that of equation (6.8) where this time each velocity junction has ports connecting

waveguides of either plate impedance YE or membrane impedance YF . Beginning with

a velocity junction.

Vi;j(n+ 1) =
2

YJ

� 7X
k=0

YEV
+
i;j;k

(n+ 1) +

11X
k=8

YFV
+
i;j;k

(n+ 1)

�

=
2

YJ

�
YE ~V �

i+1;j;2(n+
1

2
) + YE ~V �
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1

2
) + YE ~V �
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1

2
) + YE ~V �

i;j�1;1(n+
1

2
)

�
7X

k=4

YE ~V �
i;j;k

(n+
1

2
) + YFV

�
i+1;j;10(n) + YFV

�
i;j+1;11(n) + YFV

�
i�1;j;8(n) + YFV

�
i;j�1;9(n)

�

=
2

YJ

�
�M�

i+1;j;2(n+
1

2
)�M�

i;j+1;3(n+
1

2
)�M�

i�1;j;0(n+
1

2
)�M�

i;j�1;2(n+
1

2
)

+

7X
k=4

M�
i;j;k

(n+
1

2
)

�
+

2YF
YJ

�
Vi+1;j(n) + Vi;j+1(n) + Vi�1;j(n) + Vi;j�1(n)

�

� 2YF
YJ

�
V +
i+1;j;10(n) + V +

i;j+1;11(n) + V +
i�1;j;8(n) + V +

i;j�1;9(n)

�

=
2

YJ

�
�Mi+1;j(n+

1

2
)�Mi;j+1(n+

1

2
)�Mi�1;j(n+

1

2
)�Mi;j�1(n+

1

2
) + 4Mi;j(n+

1

2
)

�

� 2

YJ

�
�M+

i+1;j;2(n+
1

2
)�M+

i;j+1;3(n+
1

2
)�M+

i�1;j;0(n+
1

2
)�M+

i;j�1;2(n+
1

2
)

+
7X

k=4

M+
i;j;k

(n+
1

2
)

�
+

2YF
YJ

�
Vi+1;j(n) + Vi;j+1(n) + Vi�1;j(n) + Vi;j�1(n)

�

� 2YF
YJ

�
V �
i;j;8(n� 1) + V �

i;j;9(n� 1) + V �
i;j;10(n� 1) + V �

i;j;11(n� 1)

�

=
2

YJ

�
�Mi+1;j(n+

1

2
)�Mi;j+1(n+

1

2
)�Mi�1;j(n+

1

2
)�Mi;j�1(n+

1

2
) + 4Mi;j(n+

1

2
)

�

� 2

YJ

�
�

7X
k=0

YEV
�
i;j;k

(n)

�
+

2YF
YJ

�
Vi+1;j(n) + Vi;j+1(n) + Vi�1;j(n) + Vi;j�1(n)

�

� 2

YJ

� 11X
k=8

YFV
�
i;j;k

(n� 1)

�
: (D.3)



APPENDIX D. ADDITIONAL PROOFS 165

Now, similarly to the 1D case we note the standard fact that
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Now these two identities help us re-write the last line of equation (D.3) to give
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Now in analogy to the 1D case, we may use equation (6.10) which asserts information

about the force junctions on the waveguide plate model, to give
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Using these identities we may rewrite equation (D.4) as
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Now, subtracting 2Vi;j(n) from either side leaves us with the required FDS and writing
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This scheme is equivalent to the FDS of equation (6.14) when applying the equivalence

identities of section 6.2.2.
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