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Summary

The paper presents an analysis of the transition from regular to chaotic motion in a
Van der Pol-Duffing’s oscillator with delay after a Hopf bifurcation. The conditions for the
occurrence of the Hopf bifurcation have been determined by means of the approximate
method. For the parameters near the bifurcation point a computer simulation of the
vibrating system had been performed and the evolution of the system from regular motion

to chaos has been analysed at the decrease of the value of the dimensionless damping
coefficient.

1. Introduction

Nonlinear oscillators have been examined a long time and it would seem that
the knowledge of this subject is complete. Only the works of Ueda and coworkers
brought about a return of interest in simple vibrating systems. It is connected
with the discovery of irregular (chaotic) motion in such systems. It turned out
that chaotic solutions can occur for a forced Van der Pol’s oscillator with non-
linear rigidity and for Duffing’s oscillator or for other simple physical systems
[1]—[5]. They have also been found in nonlinear systems with delay [6]. However,
it has been difficult to present a general method to discover them. On the other
hand, theories have been formulated, connecting the transition from regular to
chaotic motion with the classical theory of dynamical systems. Two basic ones
can be distinguished among them. The first one connects the path to chaos
through period doubling bifurcations to higher and higher subharmonics as a
parameter is varied [7]: The other indicates the possibility of the occurrence of
chaos after one, two, or three Hopf bifurcations depending on their mutual
position [8]. It appears, however, that the behaviour of real physical systems can
often be more complex and does not satisfy the above simplified descriptions.
The theories still have to be experimentally confirmed in several cases [9], [10].
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This work presents a transition to chaos for the example of a Van der Pol-
Duffing oscillator with delay. In this case chaos has been preceded by a Hopf
bifurcation of the stationary state.

2. The Analysed System and the Hopf Bifurcation

The equation of motion of the analysed system has the form
F— a(l — 2% & + wlx + f2® = kx(t — 7,) + F cos wt. (1)

It can, for instance, circumscribe the vibrations of the mechanical system pre-
sented in [11], where the linear spring force possesses a time delay in its action. As
we shall concentrate on the analysis of Eq. (1) for small 7, we have

2t — 7o) = () — Talt) + é- 7 2E(1). 2)
From Eq. (1) we obtain

F— (p — x2?) & + go + p2® = F, cos wt, (3)
where :
P = 2(x — kz,) (2 — ko)7L,
o, = 20(2 — kro2) 1,
¢ = 2(wo® — k) (2 — ko), (4)
Br = 2B(2 — kro?)7,
F, = 2F(2 — kr,2)'.

Equation (3) can be rewritten in the form

=z,
(5)
t=(p — x2*) & — gqx — f2® + F, cos wt.

The approximate solution of (5) is foreseen in the form:

xr = u cos wt — v sin wt,

. (6)
z = —o(u sin wt + v cos wt),

~

where u and v are assumed to be slowly varying functions of ¢. From (6) we have

% co8 wt — v 8in wi = 0,

(7)

—o(% 8in wt + ¥ cos wt) = 2 + v,
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and, after solving for u, ¥

1
% = —— (2 + o) sin wt,
w
{ (8)
D = —— (2 + o) cos wt,
w
where
= ok = (p — x,2%) & + (0® — g) x — By2® + F, cos wt. 9)

From (8) follows after averaging

N Sl O . SWAPRI. . SV
b=+ Sum%ﬂd 8d%+vb

g — o? pv x 3p (10)
Do— 2 2 2 2y 4 2P 2 2 '
b= ok — o+ o) + - ulut o+ 0?).

Let u, and v, be a steady state solution of (10), and let u,(¢) and v,(¢) be small
disturbances of this solution. After substituting

u:uo_i_ul’

(11)
V=10 + ¥y,
in (10) and retaining only the terms of first powers of %, and v, we obtain
Uy = Au, + Bv,,
(12)
9, = Cu, + Doy,
where:
P 3 o 3
A= T T g ke — —8—1-1,.,2 ——4—%%@0,
x 9 B 3 B
Bﬁ'—g—"zl'uovu'_ gjvoz_gj o%s
9 3
C=0—Zup+ 2ty 2l (13
8 8 w
P x 3 3 B
D=-2———81-u02—§-a11)02—l—z—1u0b0,
g — o
0 —=
\2w
The necessary conditions for the Hopf bifurcation (see [12]) are:
A+ D=0,
(14)

AD — CB > 0.

8
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The first equation of (14) gives

_22' = %% + v, (15)

251

which is satisfied when «, > kr,.
Now we introduce polar coordinates 7, € (—o0, +00) and O, € (0, 27). Then

Uy = 7, CO8 O,

(16)
Vo = Ty Sin 90 .
Because u, and v, satisfy (10), we obtain after substituting (16) into (10)
1 o 2 3 2
dory? [71- (p — Zl rﬁ) + (9 +3 % 7‘02) ] = F2. (17)
Introducing (15) in (17) gives
1 o L, 9B |
5 P (o =+ ~ + 128,0802p? + 8px,w2Q2? — F%x,% = 0. (18)
1
While from the second condition of Eq. (14) we obtain
1 27 B,2p?
——pr =05 2> 0. 19
TRARIS TR LA (19)

The parameters of Eq. (3) should satisfy Eq. (18) and Eq. (19) in the critical point.
When, additional, the real part of the complex conjugate eigenvalues of Eq. (12)
are negative for « < x, and with the increase of « (x > «,) their real part becomes
positive a Hopf bifurcation occurs. In the considered case the critical value of
x, = .09 (the other parameter values are: ¥ = 109.54, v = 1.6, w, = 1., 8 = 10,,
k=5., 1, = .07).

3. Computer Simulation Results

The numerical simulation of the Eq. (1) is made using the Runge-Kutta method,
while the results are presented in the form of the time histories x(¢), phase por-
traits #(x), Poincaré maps and frequency spectra. Only the analysis of all four
diagrams gives a full view of the behaviour of the system. Poicaré maps are
registered after 7' ;, = 50. It resulted from the performed numerical calculations
that the duration of the transient state, caused by the used initial function is
extended with the increase of delay 7,, hence for small 7, a relatively small value
of T, has been assumed. The following initial function is introduced: z(¢) = 1.
for —7, < t < 0 and z(¢) = 0. for £ = 0., as well as &(f) = 0. for —7, = ¢ < 0.

The results of the numerical simulations are presented in Fig. 1. The calcu-
lations are performed with the integration step .01 for arbitraly chosen parameters
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Fig. 1. Time histories, phase portraits and Poincaré maps for «: a) 8., b) 1., ¢) .5, d) .1,

e) .01, f) .001, g) .0

F =10954, o =16, w,= 1., g =10, k =5., 1, = .07 and Poincare maps

are made for T,

= 1400. One can observe the qualitative changes of the solution

before the chaotic regime is reached. For a great damping coefficient x = 8., the
vibrations are periodic but with eight amplitudes of the Fourier components
against frequency, which decrease almost exponentially (Fig. 2). With the decrease
of the value of « (see Fig. 1b, ¢ and corresponding Fourier spectra) the components
of the solution with the other harmonics increase compared with the basic one.

Moreover, the Fourier spectrum becomes more and more irregular. At « = .1
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new components in the frequency spectra appear and the spectrum in some
narrow ranges looks like broad band — the motion exhibits small chaos (see
Figs. 1d and 2d). With further decrease of « chaos becomes more profound. The
strange attractors are presented on Poincaré’s maps (Figs. le, f, g) and the
adequate frequency spectra are shown in Fig. 2e, f, g. The investigated equation,
generally, is particularly sensitive for the changes of the time delay value 7,. The
increase of this value causes also an increase of the magnitude of the strange
attractor (Fourier spectra become in this case more broad band), while for the
decrease of 7, the regular motion appears.

4. Concluding Remarks

The paper presents a procedure leading to the detection of chaotic motion in
the Van der Pol-Duffing’s oscillator with delay. It consists in such a choice of
parameters of the analysed oscillator, that Hopf bifurcation of the periodic motion
will occur. This motion has been approximated using one basic harmonic and
then the critical value of « for the Hopf bifurcation of this steady state has been
obtained. In this case x, = .09.

The numerical results show that the bifurcation takes place for x = .1 (near
the previously analytically obtained value «.) and the transition from the regular to
irregular motion can be observed with the decrease of the dimensionless damping
«. Chaos increases with the decrease of this coefficient and the frequency spectrum
becoming broad band occurs in a wide range around the previously occurring
discrete values.
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